
The problems you 
will have when 

creating a plugins 
system for your 

shiny UI project

Joaquim Rocha

Principal SWE Manager at 
Microsoft

floss.social/@jrocha



Here to share, not to 
solve.
Goals:

• Identify patterns to help 
you get ahead of likely 
outcomes when creating 
a plugins system

Non-goals:

• Show you how to create 
a perfect & secure plugin 
system



Setting up the context

There are many systems using 
plugins in JS: VSCode, 
Mattermost, ...

Us:
Headlamp is an extensible 
Kubernetes UI
• Has a backend (go) and a 

frontend (Ts/React).
• Can be run as a desktop app 

(Linux, Mac, Windows)
Or deployed as a web app

• headlamp.dev

https://headlamp.dev


Setting up the context: What do we mean by 
plugins

Plugins should:
• Be loaded dynamically
• Change the functionality 

through an API
• Can change the UI or other core 

functionality



PLUGIN ANATOMY



We need the code, what about info? (captain obvious 

warning!)

• The code: bundled single JS file

• Ready to be run

• Already includes any needed dependencies

• The info/manifest: package.json
• Already has the base info needed in most cases

• Do not duplicate the info by requiring info declaration as part of the 
plugin code

• Being a separate, textual file, means we can read it without having to 
evaluate the plugin's code (avoid having any info/metadata coming from the 
code)



LOADING / 
UNLOADING PLUGINS



Loading a plugin

• Should the code just "run free", or be required to have an 
activate method?

• With an activate method
• Tells the plugin developer exactly when the main plugin code is to be 

executed

• May tell the system if the plugin was successfully loaded
• By having the activate method return a state, for example

• Without an activate:
• Loading the code itself is the activation!



Deactivating

• What about deactivate?
• Should allow the plugin to stop any ongoing work

• Can be used as a clean-up method

• Likely unused by most plugins

OTOH, Deactivating != Unloading

• Unloading means returning to the state before the plugin was loaded
• This is highly a responsibility of the system

• May involve reloading without said plugin



Conclusion: Loading & Unloading a plugin

• activate/deactivate are highly about giving control to the developer, 
not the system

• The system should assume that code gets loaded anywhere and 
anytime
• and that it doesn't get deactivated properly by itself



API / PLUGIN STRUCTURE



Object-oriented or Functional?

• A Plugin class sounds like a reasonable idea

• But the world is going functional? (Ultimately is a taste matter)

class Plugin {
activate(registry: PluginRegistry) {
if (new Date().getDate() !== 1) {

return [false, 'Our plugin only works 
on Mondays!'];

}
const SnoozeButton = () => ...
registerHeaderAction(SnoozeButton);

return [true, 'All good'];
}

}

registerPlugin(Plugin);

export function activate(registry: PluginRegistry) 
{

if (new Date().getDate() !== 1) {
return [false, 'Our plugin only works on 

Mondays!'];
}
const SnoozeButton = () => ...
registerHeaderAction(SnoozeButton);

return [true, 'All good'];
}



What if plugins are an actual React 
component?
• Built-in lifecycle: can be used to implement activate/deactivate

• Use of hooks directly in the actual plugin itself

export const MyPlugin = () => {
useSomeOtherHook();

useActivate(() => {
if (new Date().getDate() !== 1) {

return [false, 'Our plugin only works on Mondays!'];
}

const SnoozeButton = () => ...
registerHeaderAction(SnoozeButton);

return [true, 'All good'];
});

};



Declarative or Imperative?

• Declarative approach: may make plugins simple to learn but require 
more maintenance

• Imperative approach: offers more flexibility but arguably less control 
by the system

class Plugin {
topBarActions = [
{

label: 'Delete',
icon: 'delete-circle',
type: Actions.Types.Button,
action: Resource.delete,
actionArgs: [Resource.getID]

},
];

}

const button = () => (
<Button
label="Delete"
icon="delete-circle"
onClick={() => {

Resource.delete(resource.id);
}}

/>
);

registerTopBarAction(button);



API / FUNCTIONALITY



API for plugin functionality

• Think about all the operations plugin devs may need

• Likely they will end up needing all counterparts to every op you offer
• i.e. if you allow to add header actions, there will likely be a need for removing 

or updating them too.

• Some sort of CRUD...

• What should the API look like though?



Example: You support a list of header actions

• Should you have one function per 
operation?

• The following are the creation actions:

const button = () => (
<Button
label="Delete"
icon="delete-circle"
onClick={() => {

Resource.delete(resource.id);
}}

/>
);

registerHeaderAction(button);

Or maybe:

registerHeaderActions([button1, 
button2, button3]);



Example: Removing a header actions

• What should the deletion actions be?

Maybe?

deregisterHeaderAction(button);
removeHeaderAction(button);

• However, can a plugin easily identify any actions not added by itself?
• Relying on a function's name may not work (when the code gets minimized)
• Solution: Add IDs to any functionality you may need to refer to.

Like:

registerHeaderAction({id: 'my-delete', action: button});



CRUD(S?) (CRUD + whatabout Shuffling)

Random 1st time plugin developer on the internet:
"Hey there. Great program. How can I add my header item as the 

1st one instead of being appended at the end?"



Example (cont): You support a list of header actions

• Don't add an index parameter to the functions...

• Possible solution: A "list processor" instead of a function for every op

const MyDeleteButton = () => (
<Button

label="Delete"
icon="delete-circle"
onClick={() => {
window.alert('Not today!');

}}
/>

);

const changeDelete = (actions: HeaderAction[]) => {
return [

{
id: 'my-delete',
action: MyDeleteButton,

},
...actions.filter(action => action.id !== 'delete')

];
};

registerHeaderActionsProcessor(changeDelete);



DEVELOPER EXPERIENCE



Developer Experience

• Providing a plugin manager program is a good idea
• This can help start plugins but also check compatibility, etc.

• Headlamp ships @kinvolk/headlamp-plugin

• This allows to create, update, and run a plugin.

• Require developers to configure as little as possible, especially 
infrastructure
• The less the system requires/allows to be configured, the more control the 

system has

• Results in a better dev exp and less breakage



Developer Experience

• Don't just generate the boiler 
plate, avoid it!

• Ship any default, not-likely-to-
be-changed, files in your dev 
dependency (and point to them)

package.json:
{

"name": "change-logo",
"version": "0.0.1",
"description": "Changing the logo in Headlamp can be done like 

this.",
"scripts": {

"start": "headlamp-plugin start",
"build": "headlamp-plugin build",
"format": "headlamp-plugin format",
...

},
"prettier": "@kinvolk/eslint-config/prettier-config",
"eslintConfig": {

"extends": [
"@kinvolk",
"prettier",
"plugin:jsx-a11y/recommended"

]
},
"devDependencies": {

"@kinvolk/headlamp-plugin": "^0.5.4"
}

}

tsconfig.json:
{
"extends": "./node_modules/@kinvolk/headlamp-

plugin/config/plugins-tsconfig.json",
"include": ["./src/**/*"]

}



BUILDING & 
BUNDLING JS



Bundling JS

• Bundling JS is easy with webpack (kind of)!

• But plugins will run within your app
• You don't want them to bundle any modules your app has

• This means its own lib and dependencies (React, react-router, redux, material-
ui, …)



Avoid bundling everything

• Headlamp uses webpack's external-modules to indicate where to find 
dependencies:
• E.g. mapping react-router-dom to window.pluginLib.ReactRouter

• Also avoided shipping our entire Headlamp modules in the plugin's lib 
NPM package: shipped just the type declarations...
• This made testing plugins very difficult: cannot be tested directly as their 

dependencies are not available to compile it

• Possible solution: Just ship the lib and use it as an external module + add the 
infra for testing the plugin directly.



RUNNING THE 
PLUGINS



Compatibility

• Once beyond the 0.X versions, make sure compatibility is verified 
before loading plugins (or else...!)

• Add it to engines in the package.json
• So you can check the compatibility before loading any code

package.json

{
"name": "my-plugin",
...
"engines": {
"my-plugin-system": "^1.5"

},
...

}



sends plugins

How to run the system + plugins

• Highly special to each project

• Here is how Headlamp does this:

server / 
backend

Plugins
client / 

frontendreads

client / 
frontend 

with plugins



THANK YOU! headlamp.dev

https://headlamp.dev

