Efficiently exploit HPC resources in scientific analysis and visualization with ParaView

Nicolas Vuaille @FOSDEM23, CC-BY-NC-ND

About me Nicolas Vuaille

- C++ developer
- Free software enthusiast
- Employed by Kitware Europe
 - FOSS code contributions
 - Community interactions
 - Mainly on ParaView
- nicolas.vuaille@kitware.com

About ParaView

An **open-source** application and architecture for display and analysis of massive **scientific** datasets.

- Scientific data analysis
- Open-source (BSD-3-clause)
- Community (gitlab, discourse)
 - https://gitlab.kitware.com/paraview/paraview/-/blob/maste
 r/CONTRIBUTING.md
- Supported by Kitware (VTK, CMake)
 - Dev contracts, commercial support, courses

What's for?

An open-source application and architecture for **display** and **analysis** of massive **scientific datasets**.

- Understand simulation output
 - 3D visualization
 - along with charts and more
 - Data Processing
 - o filtering, data extraction
 - Realistic rendering
 - also make your comm' with real data

Features / Application Domains

How?

An open-source **application** and **architecture** for display and analysis of massive scientific datasets.

- A GUI (click on buttons)
- A python wrapping (run scripts)
- A framework (plugins, custom apps, ...)
- Based on Visualization ToolKit (VTK)

Which hardware to run it?

An open-source application and **architecture** for display and analysis of massive scientific datasets.

- From classical desktop
 - try out official binaries
 https://www.paraview.org/download/
- To largest supercomputers
 - large selection of build options (python, data distribution, parallelisation, rendering ...)

1 billion cell asteroid detonation simulation

Source: Sandia National Lab

Usage

- Research and Industry
- Widely adopted at SuperComputing Sciviz contest:

https://invidious.fdn.fr/playlist?list
=PLyZk_jpQ4X_pQAUzmUG17DBQnrlN2zIyE

DLR Rig250 Compressor

How ParaView efficiently exploit HPC resources?

Client Server Architecture

Distributed pvserver

In Situ catalyst

Data Distribution Analysis

- Based on MPI standard
- Readers distribute data over ranks
 - load balanced analysis
- Filters support Ghost Cells
 - when neighborhood info is needed
- Filters can redistribute data
 - ensure load balancing
- \$ mpirun -n 4 pvserver

Ghost cells in wireframe

Data Distribution Visualization

- Composition (Ice-T)
- Dedicated rendering nodes
- Offscreen Rendering
- Multiple GPUs

\$ mpirun -n 2 ./bin/renderserver --force-offscreen-rendering

Performances Instruction Parallelism

- SMPTools : CPU parallelism
 - Enable at build-time
 - Choose backend at runtime (OpenMP /TBB / C++ Threads)
 - Used in many algorithm

```
$ VTK_SMP_BACKEND_IN_USE=OpenMP ./bin/paraview
```


Performances Instruction Parallelism

- VTKm: Heterogeneous System ("Many core")
 - Optional third party
 - \$ cmake -DPARAVIEW_USE_VTKM=ON .
 - Dedicated filters using it.
 - Backends: CUDA / OpenMP / TBB ...

Performances In-situ

- Concurrent analysis and visualization tasks during simulation
 - Reduce I/O
 - Increase value of stored data
 - Zero-copy analysis

Catalyst

- Standalone C/C++ API:
 https://gitlab.kitware.com/paraview/catalyst
- Minimal instrumentation
- ABI stable
 - choose version at runtime!

```
CatalystAdaptor::Initialize(argc, argv);
for (auto timeStep : timesteps)
{
    updateFields(timeStep);
    CatalystAdaptor::Execute(timeStep, grid, attributes);
}
CatalystAdaptor::Finalize();
MPI_Finalize();
```


ParaView Catalyst

A set of in-situ data analysis and visualization capabilities, highly configurable

ParaView Catalyst

A set of in-situ data analysis and visualization capabilities, highly configurable

- ParaView implementation
- Configure with python scripting
 - can be generated from GUI
- Live Visualization from ParaView

Conclusion

- Client-server mode for batch processing
 - python scripting
 - good scaling with MPI
- State-of-the-art libraries for performance and distribution
 - MPI, VTKm, TBB
- API for in-situ

ParaView Application Architecture

User Interface

GUI / VR

Python

Web / jupyter

Catalyst

Custom App

ParaView Server Manager

VTK filter and rendering

Low Level APIs OpenGL /

MPI / DIY

OpenMP / TBB

VTKm

OpenXR

Roadmap

- In Transit (Adios2)
- Use of DIY
- Better VTKm integration
- New `ImplicitArrays` in VTK
 - "views" on memory, data compression, etc.

Questions?

Thanks for attending!

Resources

- ParaView: https://www.paraview.org
- setup paraview server: <u>https://docs.paraview.org/en/latest/ReferenceManual/parallelDataVi</u> sualization.html
- catalyst: https://gitlab.kitware.com/paraview/catalyst
- catalyst adios: https://gitlab.kitware.com/paraview/adioscatalyst
- VTKm: https://m.vtk.org/
- SMPTools: <u>https://www.kitware.com/vtk-shared-memory-parallelism-tools-20</u>
 - 21-updates/
- DIY: https://github.com/diatomic/diy
- Implicit arrays: https://www.kitware.com/vtkimplicitarrays-a-new-vtk-framework-for-manipulating-array-like-data/

