
Evolution of OSv

Towards Greater Modularity and Composability

Waldek Kozaczuk
OSv Committer

Agenda

● Introduction to OSv

● Greater Modularity and Composability

● Other Enhancements

● SeaweedFS Use Case

● Conclusion and Q&A

What Is OSv ?

An open-source versatile modular unikernel designed to run single
unmodified Linux application securely as microVM on top of a
hypervisor, when compared to traditional operating systems which
were designed for a vast range of physical machines. Or simply:

■ OS designed to run single application without isolation
between the application and kernel

■ HIP - Highly Isolated Process without ability to make system
calls to the host OS

■ Supports both x86_64 and aarch64 platforms

Components of OSv

Greater Modularity and Composability

● Experimental build mode to hide the non-glibc symbols and

libstdc++

● ZFS code out of the kernel in form of a dynamically linked library

● Build option to tailor the kernel to a set of specific device drivers -

driver profiles

● Build a version of the kernel with a subset of glibc symbols

needed to support a specific application

Problem Statement

"Fat" unikernel with full kitchen sink:

● Large subset of glibc functionality
● Full standard C++ library (libstdc++)
● Embedded ZFS filesystem driver
● Drivers for many devices

Easy to run an arbitrary app on any hypervisor, but comes with high price of the bloated kernel with
many symbols and drivers and possibly ZFS unused, thus causing:

● Inefficient memory usage
● Longer boot time
● Potential security vulnerabilities
● C++ apps may fail to run because of libstdc++ mismatch

Why Fewer Symbols Exported Matters?
● Smaller kernel ELF leads to less memory utilized
● Fewer symbols, ideally only those needed by a specific app, improves security
● Non-glibc and libstdc++ symbols hidden improve compatibility

Default kernel size is around 6.7 MB and includes subsets of following libraries:

● libresolv.so.2
● libc.so.6
● libm.so.6
● ld-linux-x86-64.so.2 / ld-linux-aarch64.so.1
● libpthread.so.0
● libdl.so.2
● librt.so.1
● libaio.so.1
● libxenstore.so.3.0
● libcrypt.so.1
● libutil.so

Hide Most Symbols and libstdc++

Build option conf_hide_symbols to hide most non-glibc and the libstdc++ symbols

● Most source files except the ones under the directories musl/ and libc/ compiled with the

flags: -fvisibility=hidden

● Symbols to be exposed as public (like the glibc ones) annotated with OSV_***_API macros

that translate to __attribute__ ((visibility ("default")))

● Link libstdc++.a with the flag --no-whole-archive

● Enforce the list of the public symbols exported by the kernel using the flag

--version-script and symbol files under directory exported_symbols/

Collect Garbage

Once all internal symbols hidden, remove any unneeded code and data

● Compile source files with the flags -ffunction-sections and

-fdata-sections

● Link kernel with the flag --gc-sections

● Modify linker script with appropriate KEEP directives to retain the boot

startup code and other dynamically enabled one like for memcpy

Benefits of Hiding Symbols and libstdc++

● ~1,600 public symbols left - ~10% of original count
○ Smaller symbol table (C++ names are long :-))

● ~40% smaller kernel
○ Needs less memory

○ Boots faster

● Better compatibility with Linux apps especially C++ ones
○ Build on Fedora and run apps from Ubuntu

● Still universal kernel

● Why conf_hide_symbols is not enabled by default?

Extract ZFS Into a Library

● Change the main makefile to build new libsolaris.so
○ Build the library with BIND_NOW and osv-mlock note to prevent potential dead locks

caused by page faults when resolving symbols and lazily populating file mappings
○ Provide INIT function zfs_initialize() to create thread pools and registers

callbacks
○ Expose ~100 symbols from the kernel to provide some FreeBSD functionality

libsolaris.so depends on

● Enhance the pagecache, ARC shrinker and ZFS dev driver to make them call into
libsolaris.so upon dynamically registering handful of callbacks

● Modify the VFS bootstrap code to dlopen("../libsolaris.so") before
mounting ZFS filesystem

Benefits of Extracting ZFS as a Library

● ZFS can be dynamically loaded from BootFS or RoFS (more about it

later)

● Kernel smaller by ~800K = 3.6M

● 10 fewer threads needed to run non-ZFS image (running ROFS image

on 1 cpu requires 25 threads only)

New C-wrappers to Expose the Module API

Many unit tests or OSv specific apps like httpserver use internal C++ API that is not available
when kernel built with non-glibc symbols hidden.

Expose OSv-specific C-wrappers API made of C-style calling convention functions to allow
calls into kernel:

● osv_get_all_threads()

● osv_version()

● osv_cmdline()

● osv_processor_features()

● …

These functions may be called by any new apps or modules interacting with OSv.

HTTP Server: Stop Using Internal C++ API

Replace some of the calls to internal C++ symbols with new module C-style API
symbols from the slide before:

● For example, sched::with_all_threads() with new
osv_get_all_threads()

In other scenarios, we fall back to standard glibc API:

● For example osv::current_mounts() is replaced with getmntent_r()
and related functions.

Driver Profiles

Build mechanism that allow creating a custom kernel with a specific device drivers intended
to target a given hypervisor

● Build parameter drivers_profile specifies a profile: list of device drivers to be linked
into kernel

● Drivers profiles are predefined in make include files (*.mk) under
conf/profiles/$(arch) directory and included by the main makefile as requested by
the drivers_profile parameter

● Script gen-drivers-config-header called from the main makefile generates
driver-config.h comprised of the #define CONF_drivers_* macros intended to
enable relevant driver in code

● Possible to include individual drivers

Driver Profiles Build Examples

● All drivers
○ scripts/build fs=rofs conf_hide_symbols=1 image=native-example
○ kernel.elf is 3632K

● VirtIO over PCI
○ scripts/build fs=rofs conf_hide_symbols=1 image=native-example drivers_profile=virtio-pci
○ kernel.elf is 3380K

● VirtIO over MMIO
○ scripts/build fs=rofs conf_hide_symbols=1 image=native-example drivers_profile=virtio-mmio
○ kernel.elf is 3120K

● Base: most drivers out
○ scripts/build fs=rofs conf_hide_symbols=1 image=native-example drivers_profile=base
○ kernel.elf is 3036K

● Specify individual drivers
○ scripts/build fs=rofs conf_hide_symbols=1 image=native-example drivers_profile=base

conf_drivers_acpi=1 conf_drivers_virtio_fs=1 conf_drivers_virtio_net=1 conf_drivers_pvpanic=1

Kernel Variations on Github

Assets on https://github.com/cloudius-systems/osv/releases/tag/v0.57.0

Ability to Build App Specific Kernel

Build mechanism that allows creating custom kernel by exporting only symbols
required by a specific application and removing all unneeded code which yields more
secure and smaller ELF.

1. Build an image for a given application.
2. Run scripts/generate_app_version_script.sh to produce app-specific

version script.
3. Re-build the image with kernel exporting only symbols needed by this app like

so:

scripts/build conf_hide_symbols=1 image=native-example \
conf_version_script=build/last/app_version_script

App Specific Kernel Examples

The golang example specific kernel built as below exports ~30 symbols and is 2688K in
size:

scripts/build fs=rofs conf_hide_symbols=1 image=golang-pie-example \

drivers_profile=virtio-mmio \

conf_version_script=build/last/app_version_script

App Specific Kernel Limitations

● What about apps using dlsym()?

○ Add symbols resolved by dlsym() manually to the

app_version_script

● What about apps executing SYSCALL or SVC

instructions?

Modularity and Compatibility: Future

● Functional elements like DHPC lookup can be compiled or extracted

as dynamic libraries.

● Support statically linked executables:

○ Implement missing clone, brk, arch_prctl syscalls

● Allow swapping some built-in glibc libraries like libm.so with

third-party ones

● Expand standard procfs and sysfs and OSv extension of sysfs

Other Improvements

● Lazy stack

● New ways to build ZFS images

● AArch64 improvements

Lazy Stack

Save substantial amount of memory by letting app stack grow
dynamically as needed instead of getting pre-populated ahead of time.

The memory fault handler requires that both interrupts and preemption
must be enabled when fault is triggered, but relatively few places in kernel
code disable either of the two or both, so the solution is:

● avoid triggering a fault in the kernel code by pre-faulting the stack
one page deep just before interrupts or preemption is disabled.

Lazy Stack Solution

Analyze code to find all places where irq_disable() and/or preempt_disable() is called directly

or indirectly and pre-fault the stack if necessary on following rules:

● Do nothing if call site in question executes always in kernel thread

● Do nothing if call site executes on populated stack - includes the above but also code

executing on interrupt, exception or syscall stack

● Do nothing if call site executes when we know that either interrupts or preemption are

already disabled

● Pre-fault unconditionally if we know that both preemption and interrupts are enabled

● Otherwise pre-fault stack by determining dynamically: only if sched::preemptable() and

irq::enabled()

New Ways to Build ZFS Images

ZFS driver extracted from the kernel as a library libsolaris.so can
be loaded from BootFS or RoFS and thus allows for 3 ways ZFS
filesystem can be mounted:

● At root (/) from the 1st partition of the 1st disk - /dev/vblk0.1
● From 2nd partition of the 1st disk - /dev/vblk0.2 at a non-root

mount point
● From 1st partition of a different disk - for example /dev/vblk1.1

at a non-root mount point

ZFS Mounted at /

The original and default method of mounting ZFS

ZFS Mounted From 2nd Partition

New method that allows ZFS to be mounted at a non-root mount point like /data

ZFS Mounted From Different Disk
ZFS mounted at a non-root mount point like /data but this time from a different disk.

Create and Manipulate ZFS Disks on Host

Instead of using zfs_loader.so that delegates to the OSv versions of
zpool.so and zfs.so, one can use the zpool and zfs on Linux host directly
provided you have OpenZFS installed.

New script zfs-image-on-host.sh that orchestrates over OpenZFS zpool and
zfs utilities can be used to:

● Mount an existing ZFS image
● Manipulate mounted ZFS on host using regular cp, rm, find, etc
● Create new disk

Script zfs-image-on-host.sh

AArch64 Improvements

● Map kernel to 63rd GB of virtual memory

● Handle system calls

● Handle exceptions on dedicated stack

● Implement signal handler

● Fix ZFS support

Move Kernel to 63rd GB
Move the kernel from the 2nd to 63rd GB of virtual memory and dynamically create mapping
tables to point to the ELF regardless where in physical memory it got loaded.

Handle SVC Instruction

Handle SVC instruction in order to support system calls on AArch64

● The SVC instruction triggers a synchronous exception in a similar way a page

fault does.

● The syscall number is passed in the x8 register

● The syscall arguments are passed in the x0 - x5 registers

● The SVC handler needs to enable exceptions downstream as particular

system call routine, for example nanosleep(2) may sleep.

Handle Exceptions on Dedicated Stack

Handle exceptions on a dedicated exception stack instead of the default one
intended for kernel and application threads.

● After taking an exception set SPSel to 0 to make SP act as alias to SP_EL0. The
SP_EL0 points to pre-allocated 4 pages deep stack.

● On exit from an exception SPSel is reset automatically based on SPSR_EL1.
● Save state of SPSel (stack selector) during thread context switch
● Support nested exceptions, for example interrupt arriving while handling a page

fault.

Used when handling synchronous exceptions (page faults, SVC instruction) and
asynchronous exceptions - device triggered interrupts.

Default Stack and Exception Stack

Default Kernel
or Application
Stack

Exception Stack

(4 pages deep)

SP_EL1 SP_EL0SP
Normally After exception taken

SeaweedFS Use Case

From Github readme - “SeaweedFS is a simple and highly scalable distributed file system”

● SeaweedFS master on OSv and volume on Linux host
● SeaweedFS volume on OSv and master on Linux host

See https://github.com/cloudius-systems/osv-apps/tree/master/seaweedfs for more details

Netlink Support

Add minimal Linux rtnetlink support which is essential to support:

● Implementation of if_nameindex() and getifaddrs() that comes from
modern musl

● Golang use of the netlink interface to discover the interfaces and IP addresses

Support 3 types of requests:

● RTM_GETLINK

● RTM_GETADDR

● RTM_GETNEIGH

VFS Enhancements and New Syscalls

● VFS
○ Implement symlinkat
○ Enhance unlinkat
○ Implement renameat

● New Syscalls
○ getcwd

○ getdents64

○ getgid

○ getuid

○ lseek

○ statfs

Roadmap

● Statically linked executables

● Refresh Capstan

○ See https://github.com/cloudius-systems/capstan/wiki/Capstan-2.0

● Refresh osv.io website

● Many others

○ See https://github.com/cloudius-systems/osv/wiki/Roadmap

Thanks

● Organizers

● ScyllaDB

○ Dor Laor

○ Nadav Har’El

● Numerous other OSv contributors

● Please join us

OSv Resources and Q&A

● Original OSv paper -
https://www.usenix.org/system/files/conference/atc14/atc14-paper-kivity.pdf

● Wiki pages:
○ Components of OSv - https://github.com/cloudius-systems/osv/wiki/Components-of-OSv
○ Memory Management - https://github.com/cloudius-systems/osv/wiki/Memory-Management
○ Networking Stack - https://github.com/cloudius-systems/osv/wiki/Networking-Stack
○ Modularization - https://github.com/cloudius-systems/osv/wiki/Modularization
○ Filesystems - https://github.com/cloudius-systems/osv/wiki/Filesystems
○ Debugging OSv - https://github.com/cloudius-systems/osv/wiki/Debugging-OSv

● My P99 presentation -
https://www.p99conf.io/session/osv-unikernel-optimizing-guest-os-to-run-stateless-and-ser
verless-apps-in-the-cloud/

https://www.usenix.org/system/files/conference/atc14/atc14-paper-kivity.pdf
https://github.com/cloudius-systems/osv/wiki/Components-of-OSv
https://github.com/cloudius-systems/osv/wiki/Memory-Management
https://github.com/cloudius-systems/osv/wiki/Modularization
https://github.com/cloudius-systems/osv/wiki/Filesystems
https://github.com/cloudius-systems/osv/wiki/Debugging-OSv

