

Distributing multicast channels to 3rd parties

A case study with OSS and virtualization/SR-IOV

Christophe Massiot
cmassiot@upipe.org

Context

● Linear channels = MPEG-TS over UDP/RTP multicast
● Well-known points of exchange (ex. Telehouse in Paris)
● Each source or destination in its own VLAN

Operator 1
Operator 2

Operator 3

Source 1 Source 2

Pure-network solution

● « Multicast Service
Reflection »

● Not widely available
● Cannot add/remove RTP or

more complex use cases

ip service reflect GigabitEthernet2/0/0 destination 239.1.1.100 to 225.1.1.100 mask-len 32
source 1.1.1.1

« Broadcast » solution

OSS alternative: DVBlast

● Originally a DVB demux but
supports multicast:
dvblast -D
@239.56.157.11:5004/ifaddr=192.168.56.214/ifname=eth3

● Forward a stream via a config file:
239.1.101.23:5004@172.23.1.114 0 *

● Options to turn on/off RTP, remap
PIDs, SID, service name, spoof
source address...

Virtualization

● Proxmox graphical frontend
over KVM

● Client isolation
● Some clients have SSH

access to their VM
● Every VLAN is bridged with a

« virtio » network interface

« There are discontinuities »

● Virtio reorders packets
● UDP packet order is not guaranteed but the media industry

relies on it

First workaround

● Using driver vmxnet3 instead of virtio solves the problem
● 30 % more CPU
● Need to optimize

SR-IOV and VT-d

Source: https://honser.github.io/openstack/2019/10/31/Provisioning-a-VM-with-SR-IOV-Interfaces/

Using SR-IOV

● Requires support from: motherboard, CPU, BIOS and network
card

● Enable IOMMU
● Upgrade card firmware and drivers
● Create virtual functions:

echo 64 > /sys/class/net/eth1/device/sriov_numvfs

● Pass-through the virtual devices to VMs
● VMs have potential access to all VLANs

Receiving multicast with SR-IOV

● A MAC filter is set-up on
the multicast MAC
address

● Limits on the number of
MAC filters

● VM is drawing dead if it
reaches the limit

Source: https://ipcisco.com/lesson/multicast-mac-addresses/

First workaround: promiscuous mode

● VM receives all packets
● Increases CPU usage
● Increases the load on the network adapter
● echo add mcast > /sys/class/net/p1p2/device/sriov/1/promisc

Second workaround: vlan_mirror

● Sends all traffic from a VLAN to a VM
● One VLAN can only be sent to one VM
● Encourages VLAN isolation of the sources
● echo add 2,4,6,18-22 > /sys/class/net/p1p1/device/sriov/3/vlan_mirror

Third workaround: virtio

● Revert back to virtio for reception
● The bridge includes IGMP snooping to reduce load
● No packet inversion on RX
● No other solution if vlan_mirror cannot be used

Receiving multicast from another VM

● Packets sent with SR-IOV are not looped back to vlan_mirror or
virtio

● Workaround: mirroring all egress traffic of a VF to the input of
another VF

● echo add 7 > /sys/class/net/p1p2/device/sriov/1/egress_mirror

Conclusions

● Multicast on virtualized environments is no picnic
● This is the summary of years of work, with side effects on

production

