
Scalable vector multimedia optimisations
RISC-V V and ARM SVE2 extensions introduction

Rémi Denis-Courmont

Remlab Tmi

Ixelles, Belgium, 4th February 2023

Outline

1 History

2 From fixed-sized to variable-length

3 ARM Scalable Vector Extension

4 RISC-V Vectors

Forewords History Variable length ARM SVE RVV End

Attendees advisory

Disclaimer

The opinions expressed therein solely

represent the personal views of the author.

I speak fast.

I do not articulate well.

If you did not understand. . .

Do interrupt me if needed!

Forewords History Variable length ARM SVE RVV End

Attendees advisory

Disclaimer

The opinions expressed therein solely

represent the personal views of the author.

I speak fast.

I do not articulate well.

If you did not understand. . .

Do interrupt me if needed!

Forewords History Variable length ARM SVE RVV End

Attendees advisory

Disclaimer

The opinions expressed therein solely

represent the personal views of the author.

I speak fast.

I do not articulate well.

If you did not understand. . .

Do interrupt me if needed!

Forewords History Variable length ARM SVE RVV End

Who am I?

16th FOSDEM attendance (since 2004). . .

1st FOSDEM presentation!

Not relevant to this presentation.

Forewords History Variable length ARM SVE RVV End

Who am I?

16th FOSDEM attendance (since 2004). . .

1st FOSDEM presentation!

Not relevant to this presentation.

Forewords History Variable length ARM SVE RVV End

Outline

1 History

2 From fixed-sized to variable-length

3 ARM Scalable Vector Extension

4 RISC-V Vectors

Forewords History Variable length ARM SVE RVV End

What is this?
You may know if older than me.

Forewords History Variable length ARM SVE RVV End

Planet of Death
You may know if my age.

Forewords History Variable length ARM SVE RVV End

Single Instruction Multiple Data

x86

64 bits: MMX (1997)

128 bits: SSE (1999), SSE2 (2000). . . AVX (2008)
256 bits: AVX2 (2011)
512 bits: AVX-512 (2013 2017)

ARM

32 bits: ARMv6 SIMD (2002)
128 bits: ARMv7 AdvSIMD, a.k.a. NEON (2005)
128 bits: ARMv8 A64 AdvSIMD, also a.k.a. NEON
(2012)

RISC-V

ENOSYS

Need to rewrite assembler every time.

Forewords History Variable length ARM SVE RVV End

Single Instruction Multiple Data

x86

64 bits: MMX (1997)
128 bits: SSE (1999)

, SSE2 (2000). . . AVX (2008)
256 bits: AVX2 (2011)
512 bits: AVX-512 (2013 2017)

ARM

32 bits: ARMv6 SIMD (2002)
128 bits: ARMv7 AdvSIMD, a.k.a. NEON (2005)
128 bits: ARMv8 A64 AdvSIMD, also a.k.a. NEON
(2012)

RISC-V

ENOSYS

Need to rewrite assembler every time.

Forewords History Variable length ARM SVE RVV End

Single Instruction Multiple Data

x86

64 bits: MMX (1997)
128 bits: SSE (1999), SSE2 (2000)

. . . AVX (2008)
256 bits: AVX2 (2011)
512 bits: AVX-512 (2013 2017)

ARM

32 bits: ARMv6 SIMD (2002)
128 bits: ARMv7 AdvSIMD, a.k.a. NEON (2005)
128 bits: ARMv8 A64 AdvSIMD, also a.k.a. NEON
(2012)

RISC-V

ENOSYS

Need to rewrite assembler every time.

Forewords History Variable length ARM SVE RVV End

Single Instruction Multiple Data

x86

64 bits: MMX (1997)
128 bits: SSE (1999), SSE2 (2000). . . AVX (2008)
256 bits: AVX2 (2011)

512 bits: AVX-512 (2013 2017)

ARM

32 bits: ARMv6 SIMD (2002)
128 bits: ARMv7 AdvSIMD, a.k.a. NEON (2005)
128 bits: ARMv8 A64 AdvSIMD, also a.k.a. NEON
(2012)

RISC-V

ENOSYS

Need to rewrite assembler every time.

Forewords History Variable length ARM SVE RVV End

Single Instruction Multiple Data

x86

64 bits: MMX (1997)
128 bits: SSE (1999), SSE2 (2000). . . AVX (2008)
256 bits: AVX2 (2011)
512 bits: AVX-512 (2013 2017)

ARM

32 bits: ARMv6 SIMD (2002)
128 bits: ARMv7 AdvSIMD, a.k.a. NEON (2005)
128 bits: ARMv8 A64 AdvSIMD, also a.k.a. NEON
(2012)

RISC-V

ENOSYS

Need to rewrite assembler every time.

Forewords History Variable length ARM SVE RVV End

Single Instruction Multiple Data

x86

64 bits: MMX (1997)
128 bits: SSE (1999), SSE2 (2000). . . AVX (2008)
256 bits: AVX2 (2011)
512 bits: AVX-512 (2013 2017)

ARM

32 bits: ARMv6 SIMD (2002)

128 bits: ARMv7 AdvSIMD, a.k.a. NEON (2005)
128 bits: ARMv8 A64 AdvSIMD, also a.k.a. NEON
(2012)

RISC-V

ENOSYS

Need to rewrite assembler every time.

Forewords History Variable length ARM SVE RVV End

Single Instruction Multiple Data

x86

64 bits: MMX (1997)
128 bits: SSE (1999), SSE2 (2000). . . AVX (2008)
256 bits: AVX2 (2011)
512 bits: AVX-512 (2013 2017)

ARM

32 bits: ARMv6 SIMD (2002)
128 bits: ARMv7 AdvSIMD, a.k.a. NEON (2005)
128 bits: ARMv8 A64 AdvSIMD, also a.k.a. NEON
(2012)

RISC-V

ENOSYS

Need to rewrite assembler every time.

Forewords History Variable length ARM SVE RVV End

Outline

1 History

2 From fixed-sized to variable-length

3 ARM Scalable Vector Extension

4 RISC-V Vectors

Forewords History Variable length ARM SVE RVV End

Vector length

Dear CPU, what is your vector length?

csrr t0, vlenb /* Vector LENgth in Bytes */

Dear CPU, how many elements can you process?

csrr t0, vlenb

slri t0, t0, #2 /* 32-bit elements */

1 Write main loop.

2 Unroll main loop.

3 Deal with edges.

That is how Clang vectorisation does it. . .

Forewords History Variable length ARM SVE RVV End

Vector length

Dear CPU, what is your vector length?

csrr t0, vlenb /* Vector LENgth in Bytes */

Dear CPU, how many elements can you process?

csrr t0, vlenb

slri t0, t0, #2 /* 32-bit elements */

1 Write main loop.

2 Unroll main loop.

3 Deal with edges.

That is how Clang vectorisation does it. . .

Forewords History Variable length ARM SVE RVV End

Vector length

Dear CPU, what is your vector length?

csrr t0, vlenb /* Vector LENgth in Bytes */

Dear CPU, how many elements can you process?

csrr t0, vlenb

slri t0, t0, #2 /* 32-bit elements */

1 Write main loop.

2 Unroll main loop.

3 Deal with edges.

That is how Clang vectorisation does it. . .

Forewords History Variable length ARM SVE RVV End

Vector length
Possible answers

A power of two!

128 bits: guaranteed minimum1.

256, 512 bits: silicon designs announced, yet to ship.

1024 bits, even 4096 proposed in (RISC-V) simulations.

65536 bits: syntactic maximum (RISC-V).

1except embedded RISC-V

Forewords History Variable length ARM SVE RVV End

Vector length
Possible answers

A power of two!

128 bits: guaranteed minimum1.

256, 512 bits: silicon designs announced, yet to ship.

1024 bits, even 4096 proposed in (RISC-V) simulations.

65536 bits: syntactic maximum (RISC-V).

1except embedded RISC-V

Forewords History Variable length ARM SVE RVV End

Predication

Not completely new concept

Essential to variable vector length programming model

Vector of boolean

Selects loaded/modified/stored elements

ARMv9 example

MOV x10, xzr

B 2f

1:

...

2: WHILELT p0.s, x10, x0

B.FIRST 1b

Forewords History Variable length ARM SVE RVV End

Predication

Not completely new concept

Essential to variable vector length programming model

Vector of boolean

Selects loaded/modified/stored elements

ARMv9 example

MOV x10, xzr

B 2f

1:

...

2: WHILELT p0.s, x10, x0

B.FIRST 1b

Forewords History Variable length ARM SVE RVV End

Unrolling

Ill fit with predication

Vector processing ̸= SIMD

Just don’t unroll. . .

ARM: ”SVE streaming mode”

Higher latency
Larger vectors (potentially)
Higher throughput

No over-alignment required! Yay!

Forewords History Variable length ARM SVE RVV End

Unrolling

Ill fit with predication

Vector processing ̸= SIMD

Just don’t unroll. . .

ARM: ”SVE streaming mode”

Higher latency
Larger vectors (potentially)
Higher throughput

No over-alignment required! Yay!

Forewords History Variable length ARM SVE RVV End

Outline

1 History

2 From fixed-sized to variable-length

3 ARM Scalable Vector Extension

4 RISC-V Vectors

Forewords History Variable length ARM SVE RVV End

SVE

Original SVE pretty useless for multimedia.

SVE2 copies most NEON mnemonics.

Just insert the predicate register operand!

Famous last words.

Forewords History Variable length ARM SVE RVV End

SVE

Original SVE pretty useless for multimedia.

SVE2 copies most NEON mnemonics.

Just insert the predicate register operand!

Famous last words.

Forewords History Variable length ARM SVE RVV End

SVE

Pick:

1 1 of 10 WHILExx instruction: WHILELT, WHILELO, . . .

2 a predicate register,

3 the element size: B , H , S or D.

4 a branch condition: B.FIRST, B.LAST. . .

Remaining elements → Predicate register

Predicate register → Condition flags

Subtracted count → Output GP register

Stop pretending AArch64 is a RISC.

Forewords History Variable length ARM SVE RVV End

SVE

Pick:

1 1 of 10 WHILExx instruction: WHILELT, WHILELO, . . .

2 a predicate register,

3 the element size: B , H , S or D.

4 a branch condition: B.FIRST, B.LAST. . .

Remaining elements → Predicate register

Predicate register → Condition flags

Subtracted count → Output GP register

Stop pretending AArch64 is a RISC.

Forewords History Variable length ARM SVE RVV End

SVE

Pick:

1 1 of 10 WHILExx instruction: WHILELT, WHILELO, . . .

2 a predicate register,

3 the element size: B , H , S or D.

4 a branch condition: B.FIRST, B.LAST. . .

Remaining elements → Predicate register

Predicate register → Condition flags

Subtracted count → Output GP register

Stop pretending AArch64 is a RISC.

Forewords History Variable length ARM SVE RVV End

Processor feature detection
It would be too easy without it.

Preprocessor: defined(ARM FEATURE SVE2)

Bare metal: ID AA64* EL1 register fields

Linux: bits from AT HWCAP2 auxillary vector entry

HWCAP2 SVE2 is probably what you want
HWCAP2 SVEPMULL

HWCAP2 SVEBITPERM

HWCAP2 SVE2P1

Examples

#include <sys/auxv.h>

(getauxval(AT HWCAP2) & HWCAP2 SVE2)

Other OSes: lol

Forewords History Variable length ARM SVE RVV End

Processor feature detection
It would be too easy without it.

Preprocessor: defined(ARM FEATURE SVE2)

Bare metal: ID AA64* EL1 register fields

Linux: bits from AT HWCAP2 auxillary vector entry

HWCAP2 SVE2 is probably what you want
HWCAP2 SVEPMULL

HWCAP2 SVEBITPERM

HWCAP2 SVE2P1

Examples

#include <sys/auxv.h>

(getauxval(AT HWCAP2) & HWCAP2 SVE2)

Other OSes: lol

Forewords History Variable length ARM SVE RVV End

Processor feature detection
It would be too easy without it.

Preprocessor: defined(ARM FEATURE SVE2)

Bare metal: ID AA64* EL1 register fields

Linux: bits from AT HWCAP2 auxillary vector entry

HWCAP2 SVE2 is probably what you want
HWCAP2 SVEPMULL

HWCAP2 SVEBITPERM

HWCAP2 SVE2P1

Examples

#include <sys/auxv.h>

(getauxval(AT HWCAP2) & HWCAP2 SVE2)

Other OSes: lol

Forewords History Variable length ARM SVE RVV End

Availability

Specifications

SVE (2016). . .

explicitly not intended for multimedia
payloads
SVE2 (2019)
SME / Scalable Matrix Extension (2021)
Streaming SVE

Hardware

Cortex-X2, Cortex-A510, Cortex-A710
Arm DynamIQ-110 cluster (2022)
Samsung Exynos 2200
Qualcomm SM8450 Snapdragon 8 Gen 1

Forewords History Variable length ARM SVE RVV End

Availability

Specifications

SVE (2016). . . explicitly not intended for multimedia
payloads
SVE2 (2019)
SME / Scalable Matrix Extension (2021)
Streaming SVE

Hardware

Cortex-X2, Cortex-A510, Cortex-A710
Arm DynamIQ-110 cluster (2022)
Samsung Exynos 2200
Qualcomm SM8450 Snapdragon 8 Gen 1

Forewords History Variable length ARM SVE RVV End

Availability

Specifications

SVE (2016). . . explicitly not intended for multimedia
payloads
SVE2 (2019)
SME / Scalable Matrix Extension (2021)
Streaming SVE

Hardware

Cortex-X2, Cortex-A510, Cortex-A710
Arm DynamIQ-110 cluster (2022)

Samsung Exynos 2200
Qualcomm SM8450 Snapdragon 8 Gen 1

Forewords History Variable length ARM SVE RVV End

Availability

Specifications

SVE (2016). . . explicitly not intended for multimedia
payloads
SVE2 (2019)
SME / Scalable Matrix Extension (2021)
Streaming SVE

Hardware

Cortex-X2, Cortex-A510, Cortex-A710
Arm DynamIQ-110 cluster (2022)
Samsung Exynos 2200
Qualcomm SM8450 Snapdragon 8 Gen 1

Forewords History Variable length ARM SVE RVV End

Outline

1 History

2 From fixed-sized to variable-length

3 ARM Scalable Vector Extension

4 RISC-V Vectors

Forewords History Variable length ARM SVE RVV End

Predication
Not sure if simpler or more intricate

Vector configuration

vsetvli t0, a4, e16, m1, ta, ma

a4 = available elements (input)

Output operand: t0 = vector length (output)

Element size: e16 ↔ 16 bits

Group size: m1 ↔ 1 vector ⇔ no grouping

Tail mode: ta agnostic ⇔ don’t care

Mask mode: ma agnostic ⇔ don’t care

Forewords History Variable length ARM SVE RVV End

Registers

Prefer greatest power-of-two multiple-numbered vectors

↱ grouping and segmentation require aligned numbers

FP registers ̸= Vectors↰

more registers for hybrid scalar/vector functions

Warning

Mind the FP calling conventions!

Forewords History Variable length ARM SVE RVV End

Bit shuffling

Segmented loads & stores up to 8 structures (ARM can
do up to 4 only)

GP register-strided loads & stores

. . . including negative strides.

Example

Load a column of 16-bit samples
at [a0] with pitch a4 in vector v8.
vlse16.v v8, (a0), a4

But. . . no vector↔vector transpose/zip

Forewords History Variable length ARM SVE RVV End

Bit shuffling

Segmented loads & stores up to 8 structures (ARM can
do up to 4 only)

GP register-strided loads & stores

. . . including negative strides.

Example

Load a column of 16-bit samples
at [a0] with pitch a4 in vector v8.
vlse16.v v8, (a0), a4

But. . . no vector↔vector transpose/zip

Forewords History Variable length ARM SVE RVV End

Processor feature detection

Preprocessor:

Element size: riscv v elen fp = 32 or 64
riscv vector ⇒ elen ≥ 64 bits

Vector length: riscv zvl{32,64,128,. . . }b
riscv vector ⇒ VL ≥ 128 bits

Hardware:

DeviceTree cpu node property

Linux: bit 21 from AT HWCAP auxillary vector entry

Examples

#include <sys/auxv.h>

(getauxval(AT HWCAP) & (1U << (’V’ - ’A’)))

Forewords History Variable length ARM SVE RVV End

Processor feature detection

Preprocessor:

Element size: riscv v elen fp = 32 or 64
riscv vector ⇒ elen ≥ 64 bits

Vector length: riscv zvl{32,64,128,. . . }b
riscv vector ⇒ VL ≥ 128 bits

Hardware: DeviceTree cpu node property

Linux: bit 21 from AT HWCAP auxillary vector entry

Examples

#include <sys/auxv.h>

(getauxval(AT HWCAP) & (1U << (’V’ - ’A’)))

Forewords History Variable length ARM SVE RVV End

Availability

Specifications

RISC-V ”V” Vector extension version 1.0 (ratified 2021)
Not integrated in RISC-V unprivileged specificaton yet

Hardware

Open-source designs exist (but. . .)
T-Head (Alibaba): draft version 0.7.1 only so far
SiFive: several IPs announced, not sold yet
Andes: AX45, not sold yet

Forewords History Variable length ARM SVE RVV End

Availability

Specifications

RISC-V ”V” Vector extension version 1.0 (ratified 2021)
Not integrated in RISC-V unprivileged specificaton yet

Hardware

Open-source designs exist (but. . .)
T-Head (Alibaba): draft version 0.7.1 only so far
SiFive: several IPs announced, not sold yet
Andes: AX45, not sold yet

Forewords History Variable length ARM SVE RVV End

Further references

Arm Architecture Reference Manual, ARMv8-A

Arm SVE supplement

Arm SME supplement

RISC-V Vector extension version 1.0.

FFmpeg source code.

Forewords History Variable length ARM SVE RVV End

Any questions?

	Forewords
	History
	From fixed-sized to variable-length
	ARM Scalable Vector Extension
	RISC-V Vectors
	End

