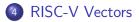
Scalable vector multimedia optimisations RISC-V V and ARM SVE2 extensions introduction

Rémi Denis-Courmont


Remlab Tmi

Ixelles, Belgium, 4th February 2023

Outline

- 2 From fixed-sized to variable-length
- 3 ARM Scalable Vector Extension

Forewords	History	Variable length	ARM SVE	RVV	End
●○	0000	00000		000000	oo

Attendees advisory

Disclaimer

The opinions expressed therein solely represent the personal views of the author.

Forewords	History	Variable length	ARM SVE	RVV	End
●O	0000	00000		000000	00

Attendees advisory

Disclaimer

The opinions expressed therein solely represent the personal views of the author.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- I speak fast.
- I do not articulate well.

Forewords	History	Variable length	ARM SVE	RVV	End
●O	0000	00000		000000	00

Attendees advisory

Disclaimer

The opinions expressed therein solely represent the personal views of the author.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

- I speak fast.
- I do not articulate well.

If you did not understand...

Do interrupt me if needed!

Forewords	History	Variable length	ARM SVE	RVV	End
○●	0000	00000		000000	oo
Who am	n I?				

• 16th FOSDEM attendance (since 2004)...

Forewords	History	Variable length	ARM SVE	RVV	End
○●	0000	00000		000000	00
Who ar	n I?				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- 16th FOSDEM attendance (since 2004)...
- 1st FOSDEM presentation!
- Not relevant to this presentation.

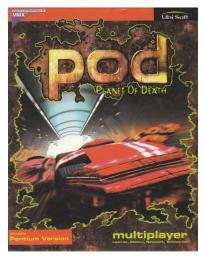
Forewords	History	Variable length	ARM SVE	RVV	End
00	●000	00000	00000	000000	00
Outline					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 2 From fixed-sized to variable-length
- ③ ARM Scalable Vector Extension
- A RISC-V Vectors

Forewords	History 0●00	Variable length 00000	ARM SVE	RVV 000000	End 00

What is this?


You may know if older than me.

Planet of Death

You may know if my age.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• x86

• 64 bits: MMX (1997)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Single Instruction Multiple Data

- x86
 - 64 bits: MMX (1997)
 - 128 bits: SSE (1999)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

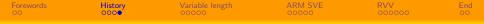
Single Instruction Multiple Data

- x86
 - 64 bits: MMX (1997)
 - 128 bits: SSE (1999), SSE2 (2000)

- x86
 - 64 bits: MMX (1997)
 - 128 bits: SSE (1999), SSE2 (2000)... AVX (2008)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• 256 bits: AVX2 (2011)



• x86

- 64 bits: MMX (1997)
- 128 bits: SSE (1999), SSE2 (2000)... AVX (2008)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 256 bits: AVX2 (2011)
- 512 bits: AVX-512 (2013 2017)

• x86

- 64 bits: MMX (1997)
- 128 bits: SSE (1999), SSE2 (2000)... AVX (2008)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 256 bits: AVX2 (2011)
- 512 bits: AVX-512 (2013 2017)
- ARM
 - 32 bits: ARMv6 SIMD (2002)

• x86

- 64 bits: MMX (1997)
- 128 bits: SSE (1999), SSE2 (2000)... AVX (2008)
- 256 bits: AVX2 (2011)
- 512 bits: AVX-512 (2013 2017)
- ARM
 - 32 bits: ARMv6 SIMD (2002)
 - 128 bits: ARMv7 AdvSIMD, a.k.a. NEON (2005)
 - 128 bits: ARMv8 A64 AdvSIMD, also a.k.a. NEON (2012)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- RISC-V
 - ENOSYS

Need to rewrite assembler every time.

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	●0000		000000	00
Outline					

2 From fixed-sized to variable-length

3 ARM Scalable Vector Extension

4 RISC-V Vectors

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	○●○○○		000000	00
Vector	length				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dear CPU, what is your vector length?

csrr t0, vlenb /* Vector LENgth in Bytes */

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	⊙●○○○		000000	00
Vector	length				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dear CPU, what is your vector length?

csrr t0, vlenb /* Vector LENgth in Bytes */

Dear CPU, how many elements can you process?

csrr t0, vlenb

slri t0, t0, #2 /* 32-bit elements */

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	0●000		000000	00
Vector	length				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dear CPU, what is your vector length?

csrr t0, vlenb /* Vector LENgth in Bytes */

Dear CPU, how many elements can you process?

csrr t0, vlenb
slri t0, t0, #2 /* 32-bit elements */

- Write main loop.
- Onroll main loop.
- Oeal with edges.

That is how Clang vectorisation does it...

Forewords 00	History 0000	Variable length 00●00	ARM SVE	RVV 000000	End 00
Vector	length				
Possible an	iswers				

(ロ)、(型)、(E)、(E)、 E) の(()

• A power of two!

¹except *embedded* RISC-V

Forewords 00	History 0000	Variable length 00●00	ARM SVE	RVV 000000	End 00
Vector	length				
Possible an	SWORS				

- A power of two!
- 128 bits: guaranteed minimum¹.
- 256, 512 bits: silicon designs announced, yet to ship.
- 1024 bits, even 4096 proposed in (RISC-V) simulations.
- 65536 bits: syntactic maximum (RISC-V).

- Not *completely* new concept
- Essential to variable vector length programming model

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	000€0		000000	00
Predica	ation				

- Not *completely* new concept
- Essential to variable vector length programming model
- Vector of boolean
- Selects loaded/modified/stored elements

ARM	lv9 exampl	e
	MOV	x10, xzr
	В	2f
1:		
	•••	
2:	WHILELT	p0.s, x10, x0
	B.FIRST	1b

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	0000●		000000	00
Unrollir	ng				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Ill fit with predication
- Vector processing \neq SIMD
- Just don't unroll...

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	0000●		000000	00
Unrollir	ng				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- III fit with predication
- Vector processing \neq SIMD
- Just don't unroll...
- ARM: "SVE streaming mode"
 - Higher latency
 - Larger vectors (potentially)
 - Higher throughput
- No over-alignment required! Yay!

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	00000		000000	00
Outline					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 2 From fixed-sized to variable-length
- 3 ARM Scalable Vector Extension

4 RISC-V Vectors

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	00000		000000	00
SVE					

• Original SVE pretty useless for multimedia.

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	00000		000000	00
SVE					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Original SVE pretty useless for multimedia.
- SVE2 copies most NEON mnemonics.
- Just insert the predicate register operand!
- Famous last words.

Forewords	History 0000	Variable length 00000	ARM SVE	RVV 000000	End 00
SVE					

Pick:

I of 10 WHILEXX instruction: WHILELT, WHILELO, ...

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- a predicate register,
- **3** the element size: B, H, S or D.
- a branch condition: B.FIRST, B.LAST...

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	00000		000000	00
SVE					

Pick:

I of 10 WHILEXX instruction: WHILELT, WHILELO, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- a predicate register,
- the element size: B, H, S or D.
- a branch condition: B.FIRST, B.LAST...
 - Remaining elements \rightarrow Predicate register
 - \bullet Predicate register \rightarrow Condition flags
 - \bullet Subtracted count \rightarrow Output GP register

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	00000		000000	00
SVE					

Pick:

I of 10 WHILEXX instruction: WHILELT, WHILELO, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- a predicate register,
- the element size: B, H, S or D.
- a branch condition: B.FIRST, B.LAST...
 - Remaining elements \rightarrow Predicate register
 - \bullet Predicate register \rightarrow Condition flags
 - \bullet Subtracted count \rightarrow Output GP register

Stop pretending AArch64 is a RISC.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Processor feature detection

It would be too easy without it.

- Preprocessor: defined(__ARM_FEATURE_SVE2)
- Bare metal: ID_AA64*_EL1 register fields

Processor feature detection

It would be too easy without it.

- Preprocessor: defined(__ARM_FEATURE_SVE2)
- Bare metal: ID_AA64*_EL1 register fields
- Linux: bits from AT_HWCAP2 auxillary vector entry
 - HWCAP2_SVE2 is probably what you want
 - HWCAP2_SVEPMULL
 - HWCAP2_SVEBITPERM
 - HWCAP2_SVE2P1

Examples

#include <sys/auxv.h>
(getauxval(AT_HWCAP2) & HWCAP2_SVE2)

Processor feature detection

It would be too easy without it.

- Preprocessor: defined(__ARM_FEATURE_SVE2)
- Bare metal: ID_AA64*_EL1 register fields
- Linux: bits from AT_HWCAP2 auxillary vector entry
 - HWCAP2_SVE2 is probably what you want
 - HWCAP2_SVEPMULL
 - HWCAP2_SVEBITPERM
 - HWCAP2_SVE2P1


Examples

#include <sys/auxv.h>
(getauxval(AT_HWCAP2) & HWCAP2_SVE2)

• Other OSes: lol

SpecificationsSVE (2016)...

Specifications

• SVE (2016)... explicitly not intended for multimedia payloads

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- SVE2 (2019)
- SME / Scalable Matrix Extension (2021)
- Streaming SVE

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	00000		000000	00
Availat	oility				

Specifications

• SVE (2016)... explicitly not intended for multimedia payloads

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- SVE2 (2019)
- SME / Scalable Matrix Extension (2021)
- Streaming SVE
- Hardware
 - Cortex-X2, Cortex-A510, Cortex-A710
 - Arm DynamlQ-110 cluster (2022)

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	00000		000000	00
Availat	oility				

Specifications

• SVE (2016)... explicitly not intended for multimedia payloads

- SVE2 (2019)
- SME / Scalable Matrix Extension (2021)
- Streaming SVE
- Hardware
 - Cortex-X2, Cortex-A510, Cortex-A710
 - Arm DynamlQ-110 cluster (2022)
 - Samsung Exynos 2200
 - Qualcomm SM8450 Snapdragon 8 Gen 1

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	00000		●00000	00
Outline					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 2 From fixed-sized to variable-length
- 3 ARM Scalable Vector Extension

Forewords	History 0000	Variable length 00000	ARM SVE	RVV 0€0000	End 00

Predication

Not sure if simpler or more intricate

Vector configuration

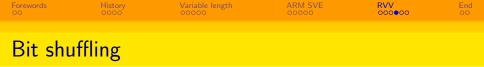
vsetvli t0, a4, e16, m1, ta, ma

- a4 = available elements (input)
- Output operand: t0 = vector length (output)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Element size: e16 \leftrightarrow 16 bits
- Group size: $\texttt{m1} \leftrightarrow \texttt{1}$ vector \Leftrightarrow no grouping
- Tail mode: ta agnostic ⇔ don't care
- Mask mode: ma agnostic ⇔ don't care

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	00000		000000	00
Registe	ers				

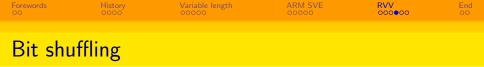

- Prefer greatest power-of-two multiple-numbered vectors
 proving and commentation require aligned numbers
 - \succeq grouping and segmentation require aligned numbers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- FP registers \neq Vectors

Warning

Mind the FP calling conventions!


 Segmented loads & stores up to 8 structures (ARM can do up to 4 only)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- GP register-strided loads & stores
- ... including negative strides.

Example

Load a *column* of 16-bit samples # at [a0] with pitch a4 in vector v8. vlse16.v v8, (a0), a4

 Segmented loads & stores up to 8 structures (ARM can do up to 4 only)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- GP register-strided loads & stores
- ... including negative strides.

Example

Load a column of 16-bit samples # at [a0] with pitch a4 in vector v8. vlse16.v v8, (a0), a4

● But... no vector↔vector transpose/zip

Processor feature detection

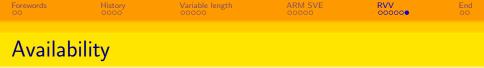
• Preprocessor:

- Element size: $__riscv_v_elen_fp = 32 \text{ or } 64$
- __riscv_vector \Rightarrow *elen* \geq 64 bits
- Vector length: __riscv_zvl{32,64,128,...}b

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- __riscv_vector \Rightarrow VL \geq 128 bits
- Hardware:

Processor feature detection


• Preprocessor:

- Element size: $__riscv_v_elen_fp = 32 \text{ or } 64$
- __riscv_vector \Rightarrow *elen* \geq 64 bits
- Vector length: __riscv_zvl{32,64,128,...}b
- __riscv_vector \Rightarrow VL \geq 128 bits
- Hardware: DeviceTree cpu node property
- Linux: bit 21 from AT_HWCAP auxillary vector entry

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples

#include <sys/auxv.h>
(getauxval(AT_HWCAP) & (1U << ('V' - 'A')))</pre>

- Specifications
 - RISC-V "V" Vector extension version 1.0 (ratified 2021)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Not integrated in RISC-V unprivileged specificaton yet

- Specifications
 - RISC-V "V" Vector extension version 1.0 (ratified 2021)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Not integrated in RISC-V unprivileged specificaton yet
- Hardware
 - Open-source designs exist (but...)
 - T-Head (Alibaba): draft version 0.7.1 only so far
 - SiFive: several IPs announced, not sold yet
 - Andes: AX45, not sold yet

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	00000	00000	000000	●○
Furthe	r referenc	es			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Arm Architecture Reference Manual, ARMv8-A
- Arm SVE supplement
- Arm SME supplement
- RISC-V Vector extension version 1.0.
- FFmpeg source code.

Forewords	History	Variable length	ARM SVE	RVV	End
00	0000	00000		000000	⊙●

Any questions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ