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Attendees advisory

Disclaimer

The opinions expressed therein solely

represent the personal views of the author.

I speak fast.

I do not articulate well.

If you did not understand. . .

Do interrupt me if needed!
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1st FOSDEM presentation!
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What is this?
You may know if older than me.



Forewords History Variable length ARM SVE RVV End

Planet of Death
You may know if my age.
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Single Instruction Multiple Data

x86

64 bits: MMX (1997)

128 bits: SSE (1999), SSE2 (2000). . . AVX (2008)
256 bits: AVX2 (2011)
512 bits: AVX-512 (2013 2017)

ARM

32 bits: ARMv6 SIMD (2002)
128 bits: ARMv7 AdvSIMD, a.k.a. NEON (2005)
128 bits: ARMv8 A64 AdvSIMD, also a.k.a. NEON
(2012)

RISC-V

ENOSYS

Need to rewrite assembler every time.
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Vector length

Dear CPU, what is your vector length?

csrr t0, vlenb /* Vector LENgth in Bytes */

Dear CPU, how many elements can you process?

csrr t0, vlenb

slri t0, t0, #2 /* 32-bit elements */

1 Write main loop.

2 Unroll main loop.

3 Deal with edges.

That is how Clang vectorisation does it. . .
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Vector length
Possible answers

A power of two!

128 bits: guaranteed minimum1.

256, 512 bits: silicon designs announced, yet to ship.

1024 bits, even 4096 proposed in (RISC-V) simulations.

65536 bits: syntactic maximum (RISC-V).

1except embedded RISC-V
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Predication

Not completely new concept

Essential to variable vector length programming model

Vector of boolean

Selects loaded/modified/stored elements

ARMv9 example

MOV x10, xzr

B 2f

1:

...

2: WHILELT p0.s, x10, x0

B.FIRST 1b
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Unrolling

Ill fit with predication

Vector processing ̸= SIMD

Just don’t unroll. . .

ARM: ”SVE streaming mode”

Higher latency
Larger vectors (potentially)
Higher throughput

No over-alignment required! Yay!
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SVE

Original SVE pretty useless for multimedia.

SVE2 copies most NEON mnemonics.

Just insert the predicate register operand!

Famous last words.
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SVE

Pick:

1 1 of 10 WHILExx instruction: WHILELT, WHILELO, . . .

2 a predicate register,

3 the element size: B , H , S or D.

4 a branch condition: B.FIRST, B.LAST. . .

Remaining elements → Predicate register

Predicate register → Condition flags

Subtracted count → Output GP register

Stop pretending AArch64 is a RISC.
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Processor feature detection
It would be too easy without it.

Preprocessor: defined( ARM FEATURE SVE2)

Bare metal: ID AA64* EL1 register fields

Linux: bits from AT HWCAP2 auxillary vector entry

HWCAP2 SVE2 is probably what you want
HWCAP2 SVEPMULL

HWCAP2 SVEBITPERM

HWCAP2 SVE2P1

Examples

#include <sys/auxv.h>

(getauxval(AT HWCAP2) & HWCAP2 SVE2)

Other OSes: lol
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Availability

Specifications

SVE (2016). . .

explicitly not intended for multimedia
payloads
SVE2 (2019)
SME / Scalable Matrix Extension (2021)
Streaming SVE

Hardware

Cortex-X2, Cortex-A510, Cortex-A710
Arm DynamIQ-110 cluster (2022)
Samsung Exynos 2200
Qualcomm SM8450 Snapdragon 8 Gen 1
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Predication
Not sure if simpler or more intricate

Vector configuration

vsetvli t0, a4, e16, m1, ta, ma

a4 = available elements (input)

Output operand: t0 = vector length (output)

Element size: e16 ↔ 16 bits

Group size: m1 ↔ 1 vector ⇔ no grouping

Tail mode: ta agnostic ⇔ don’t care

Mask mode: ma agnostic ⇔ don’t care
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Registers

Prefer greatest power-of-two multiple-numbered vectors

↱ grouping and segmentation require aligned numbers

FP registers ̸= Vectors↰

more registers for hybrid scalar/vector functions

Warning

Mind the FP calling conventions!
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Bit shuffling

Segmented loads & stores up to 8 structures (ARM can
do up to 4 only)

GP register-strided loads & stores

. . . including negative strides.

Example

# Load a column of 16-bit samples
# at [a0] with pitch a4 in vector v8.
vlse16.v v8, (a0), a4

But. . . no vector↔vector transpose/zip
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Processor feature detection

Preprocessor:

Element size: riscv v elen fp = 32 or 64
riscv vector ⇒ elen ≥ 64 bits

Vector length: riscv zvl{32,64,128,. . . }b
riscv vector ⇒ VL ≥ 128 bits

Hardware:

DeviceTree cpu node property

Linux: bit 21 from AT HWCAP auxillary vector entry

Examples

#include <sys/auxv.h>

(getauxval(AT HWCAP) & (1U << (’V’ - ’A’)))
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Availability

Specifications

RISC-V ”V” Vector extension version 1.0 (ratified 2021)
Not integrated in RISC-V unprivileged specificaton yet

Hardware

Open-source designs exist (but. . . )
T-Head (Alibaba): draft version 0.7.1 only so far
SiFive: several IPs announced, not sold yet
Andes: AX45, not sold yet
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Further references

Arm Architecture Reference Manual, ARMv8-A

Arm SVE supplement

Arm SME supplement

RISC-V Vector extension version 1.0.

FFmpeg source code.
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Any questions?
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