
AVX-512 in FFmpeg
Kieran Kunhya <kieran@kunhya.com>

What is AVX-512?

• New SIMD (Single Instruction Multiple Data) Instruction Set for Intel since
2017, and more recently AMD CPUs

• 512-bit register sizes (zmm)

• Many new instructions

• Opmasks

• Comparison instructions

• Many things not so interesting in multimedia (e.g cryptography, neural
networks)

• Lots of fancy words, but high schoolers have written assembly in FFmpeg!

Why is this relevant now?

• AVX-512 has been around since 2017. Why is it relevant
now?

• Old Skylake (server) systems had large performance
throttling when using larger registers. AVX-512 remained
unused in multimedia

• Could still use new instructions with smaller registers
• Can be beneficial in some cases (see later)

• Ice Lake (10th and 11th Gen Intel) first to have no throttling

How to get started?

• Intel have removed AVX-512 support
in consumer processors (from 12th

Gen) 

• Available in AMD Zen 4

• Still exists in Intel Server CPUs (Xeon).
Available from cloud providers

• Easiest way is to buy an Intel NUC
(11th Gen)

Existing work in multimedia using AVX-512

• dav1d project added AVX-512 support

• AV1 decoding, particularly beneficial owing to large block sizes
• 10-20% faster *overall* decoding

• Classic FFmpeg/x264 approach to assembly

• No intrinsics, nor inline assembly

• Detect CPU capabilities and set function pointers to appropriate
functions

• Messy Venn Diagram of capabilities, but two in practice we care
about

CPU_FLAGS in FFmpeg

int av_get_cpu_flags(void);

#define AV_CPU_FLAG_AVX512 0x100000 ///<

AVX-512 functions: requires OS support even if

YMM/ZMM registers aren't used

#define AV_CPU_FLAG_AVX512ICL 0x200000 ///<

F/CD/BW/DQ/VL/VNNI/IFMA/VBMI/VBMI2/VPOPCNTDQ/BIT

ALG/GFNI/VAES/VPCLMULQDQ

Lanes

• Older AVX ymm registers are split
into lanes

• Instructions (mainly) operate in lanes

• Can be tricky to move data between
lanes

• Limitation on AVX2 code
16-byte Lane 1 16-byte Lane 0

256-bit ymm Register (old)

K-mask registers

• A new set of registers k0-k7 that allow the destination
register to remain unchanged or set to zero

• For example, addition, but only some values:
• paddw zmm1{k1}, zmm2, zmm3

• kmovX instructions to manipulate k-mask registers

vpermb

• Byte shuffles (permute) are the one
of the most important instructions
in multimedia

• Similar to existing pshufb
instruction but cross-lane

• Need to use k-masks with vpermb
to zero out a byte

• e.g for zigzag scan

• Also, VPERMT2B, permute from
two registers

A B C D E F G H

E A 0 C C B H D

Variable shifts

• vpsrlvw/vpsrlvd/vpsrlvq – variable right shift (logical)

• vpsllvw/vpsllvd/vpsllvq – variable left shift (logical)

• (letter soup, especially arithmetic shifts!)

• Historically had to use multiple instructions and various trickery
to achieve right shifts. Had many limitations.

• Faster than multiply for left shifts

vpternlogd

• The kitchen sink of instructions!

• Allows a programmable truth table to be
implemented per bit input in each register

• Can replace up to eight instructions!

• e.g vpternlogd zmm0, zmm1, zmm2,

0xca

• zmm0 = zmm0 ? zmm1 : zmm2; (for each bit)

• http://0x80.pl/articles/avx512-ternary-
functions.html

http://0x80.pl/articles/avx512-ternary-functions.html
http://0x80.pl/articles/avx512-ternary-functions.html

Example: v210enc (1)

• .loop:

• movu ym1, [yq + 2*widthq]

• vinserti32x4 m1, [uq + 1*widthq], 2

• vinserti32x4 m1, [vq + 1*widthq], 3

• vpermb m1, m2, m1 ; uyvx yuyx vyux yvyx

• CLIPUB m1, m4, m5

•
pmaddubsw m0, m1, m3 ; shift high and low samples of each dword and mask out other bits

• pslld m1, 4 ; shift center sample of each dword

• vpternlogd m0, m1, m6, 0xd8 ; C?B:A ; merge and mask out bad bits from B

•
movu [dstq], m0

• […]

• jl .loop

• Takes 3x 8-bit samples, extends to 10-bit and packs into 32-bits

Example: v210enc (2)

• Benchmarks (decicyles)
• Skylake

• v210_planar_pack_8_c: 2373.5
• […]
• v210_planar_pack_8_avx2: 194.0
• v210_planar_pack_8_avx512: 174.0
• vpternlogd on a shorter ymm register

• Ice Lake
• v210_planar_pack_8_c: 2743.6
• v210_planar_pack_8_avx2: 246.6
• v210_planar_pack_8_avx512: 238.6
• v210_planar_pack_8_avx512icl: 122.1
• vpermb and zmm nearly twice as fast as avx512 ymm, and more than twenty times

faster than C!

What AVX-512 code next?

• Anything involving line/frame based processing
• e.g filters, scalers etc.

• Comparisons

• vpternlogd in many places (e.g 3-way boolean)

• Also change variable shifts in many places

• Intel manual is very verbose (useful in some cases)

• https://www.officedaytime.com/simd512e/

https://www.officedaytime.com/simd512e/

Any questions?

	Slide 1: AVX-512 in FFmpeg
	Slide 2: What is AVX-512?
	Slide 3: Why is this relevant now?
	Slide 4: How to get started?
	Slide 5: Existing work in multimedia using AVX-512
	Slide 6: CPU_FLAGS in FFmpeg
	Slide 7: Lanes
	Slide 8: K-mask registers
	Slide 9: vpermb
	Slide 10: Variable shifts
	Slide 11: vpternlogd
	Slide 12: Example: v210enc (1)
	Slide 13: Example: v210enc (2)
	Slide 14: What AVX-512 code next?
	Slide 15: Any questions?

