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“ 
Programming Protocol-independent Packet Processors (P4) is a
domain-specific language for network devices, specifying how data
plane devices (switches, NICs, routers, filters, etc.) process packets.

Great, what does that mean?

It's a language for hardware optimized network processing
(think SIMD for network)
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It roughly looks like C:

parser MyParser(packet_in pkt, out headers_t hdr, 
                inout meta_t meta, inout std_meta_t std_meta) {
    state start {
        pkt.extract(hdr.type);
        transition select(hdr.type.tag) {
            HOPS: parse_hops;
            STANDARD: parse_standard;
            default: accept;
        }
    }
[...]
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control: Modify a parsed packet in order to resent
package: Defines the binding logic between the hardware
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Other interesting keywords such as state or tables exist but are
out of scope for this talk.

LET'S MAKE A TRANSPILER!
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WHAT IS A TRANSPILER?

Nix -> P4 translator
P4 Compiler

Target compiler

What does it look like?



transpiler

source = {                                                                 
  include = [ "core.p4" "v1model.p4" ];
                                                                           
  define = { "test" = "test2"; };
  headers = {
    const = {
      "MAX_HOPS" = { type = "int"; value = "10"; };
      "STANDARD" = { type = "int"; value = "0"; };
      "HOPS" = { type = "int"; value = "1"; };
    };
                                                                           
    header = { "type_t".content = [ { "tag" = "bit<8>"; } ];
      "hop_t".content = [
        { "port" = "bit<8>"; }
        { "bos" = "bit<8>"; }
      ];
      "standard_t".content = [
        { "src" = "bit<8>"; }
        { "dst" = "bit<8>"; }
      ];
    };
  [...]
 };
in
  p4Platform.mkProgram {
    name = "test";
    src = (p4Platform.runTranspiler
      { p4Source = source; });
  }
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transpiler

source = {                                                                 
  include = [ "core.p4" "v1model.p4" ];
                                                                           
  define = { "test" = "test2"; };
  headers = {
    header = { inherit ethernet_h ipv4_no_options_h; };
    typedef = { inherit macAddr ip4Addr; };
  };
 
  [...]
};
in
  p4Platform.mkProgram {
    name = "test";
    src = (p4Platform.runTranspiler
      { p4Source = source; });
  }
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WHICH WE CAN SIMPLIFY!



transpiler

header = {
  "ethernet_h".content = [
    { "dstAddr" = "macAddr"; }
    { "srcAddr" = "macAddr"; }
    { "etherType" = "bit<16>"; }
  ];
};
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header = {
  "ethernet_h".content = [
    { "dstAddr" = "macAddr"; }
    { "srcAddr" = "macAddr"; }
    { "etherType" = "bit<16>"; }
  ];
};
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What does the end result looks like?



transpiler
# transpiler:
mkHeader = header:
  concatStringsSep "\n\n" (mapAttrsToList (name: value:
    (if (value.union) then "header_union " else "header ")
      + name + " {\n " +
      (concatStringsSep "\n" (flatten (imap1 (_: v:
        (mapAttrsToList (name: value: "    " + value + " " + name + ";") v)
      ) value.content))) + "\n}" ) header);
 
[...]
# module:
header = mkOption {
  description = ''
    The list of headers of the program.
  '';
  default = { };
  type = types.attrsOf (types.submodule {
    options = {
      union = mkOption {
        type = types.bool;
        default = false;
      };
      content = mkOption {
        type = types.listOf (types.attrsOf types.str);
        default = [ ];
      };
    };

});
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  description = ''
    The list of headers of the program.
  '';
  default = { };
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    options = {
      union = mkOption {
        type = types.bool;
        default = false;
      };
      content = mkOption {
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What does the end result looks like?
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/* This file has been auto-generated by Nix, do not edit it manually! */
#include <core.p4>
#include <v1model.p4>
 
#define test test2
 
const int HOPS = 1;
const int MAX_HOPS = 10;
const int STANDARD = 0;
 
typedef standard_metadata_t std_meta_t;
 
header standard_t {
     bit<8> src;
    bit<8> dst;
}
 
 
struct headers_t {
     type_t type;
    hop_t[MAX_HOPS] hops;
    standard_t standard;
}
 
parser MyParser(packet_in pkt, out headers_t hdr, inout meta_t meta, inout 
    state start {
    [...]
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/* This file has been auto-generated by Nix, do not edit it manually! */
#include <core.p4>
#include <v1model.p4>
 
#define test test2
 
const int HOPS = 1;
const int MAX_HOPS = 10;
const int STANDARD = 0;
 
typedef standard_metadata_t std_meta_t;
 
header standard_t {
     bit<8> src;
    bit<8> dst;
}
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/* This file has been auto-generated by Nix, do not edit it manually! */
#include <core.p4>
#include <v1model.p4>
 
#define test test2
 
const int HOPS = 1;
const int MAX_HOPS = 10;
const int STANDARD = 0;
 
typedef standard_metadata_t std_meta_t;
 
header standard_t {
     bit<8> src;
    bit<8> dst;
}
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But what is BMV2?
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GLAD YOU ASKED!

setup

“ 
The simple_switch architecture is the de-facto
architecture for most users, as it is roughly
equivalent to the "abstract switch model"

described in the .P4_14 spec

Basically an interface for hardware targeting
the switch.

https://p4.org/specs
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To use P4 you need a target, the three most common targets
are:

setup

userland (eBPF, DPDK, etc)
hardware (FPGAs, custom ASIC)
emulated (BMV2)

Obviously, those need some kind of interface!

The Abstract Switch Interface is usually used,
with a few per-device changes

This also needs changes to the transpiler!
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Introducing : FPGAs on Nix

setup

(Yes, really)

(I forgot to take the picture before going to FOSDEM
so imagine an FPGA sitting on a computer, with USB

and ethernet plugged in)
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1. Add hardware definitions to Nix for FPGAs
2. Add an auto-reload/deploy mechanism through

USB or custom interfaces (e.g. JTAG)
3. Add a data plane mechanism for feeding data

from the host (further off).

All of this is a work-in-progress for now.

But software P4 works!
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QUESTIONS?
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gauvain@govanify.com

(/resume.pdf)govanify.com

@GovanifY

THANK YOU!

mailto:gauvain@govanify.com
https://govanify.com/
https://twitter.com/GovanifY


secure-boot

ONE LAST THING...


