
P4 IN NIX
Gauvain Roussel-Tarbouriech

WHAT IS P4?

 language

WHAT IS P4?

 language

“
Programming Protocol-independent Packet Processors (P4) is a
domain-specific language for network devices, specifying how data
plane devices (switches, NICs, routers, filters, etc.) process packets.

WHAT IS P4?

 language

“
Programming Protocol-independent Packet Processors (P4) is a
domain-specific language for network devices, specifying how data
plane devices (switches, NICs, routers, filters, etc.) process packets.

Great, what does that mean?

WHAT IS P4?

 language

“
Programming Protocol-independent Packet Processors (P4) is a
domain-specific language for network devices, specifying how data
plane devices (switches, NICs, routers, filters, etc.) process packets.

Great, what does that mean?

It's a language for hardware optimized network processing
(think SIMD for network)

WHAT IS P4???

 language

WHAT IS P4???

 language

It roughly looks like C:

WHAT IS P4???

 language

It roughly looks like C:

parser MyParser(packet_in pkt, out headers_t hdr,
 inout meta_t meta, inout std_meta_t std_meta) {
 state start {
 pkt.extract(hdr.type);
 transition select(hdr.type.tag) {
 HOPS: parse_hops;
 STANDARD: parse_standard;
 default: accept;
 }
 }
[...]

1
2
3
4
5
6
7
8
9
10
11

WHAT IS P4???

 language

It roughly looks like C:

parser MyParser(packet_in pkt, out headers_t hdr,
 inout meta_t meta, inout std_meta_t std_meta) {
 state start {
 pkt.extract(hdr.type);
 transition select(hdr.type.tag) {
 HOPS: parse_hops;
 STANDARD: parse_standard;
 default: accept;
 }
 }
[...]

1
2
3
4
5
6
7
8
9
10
11

...With a few oddities :)

 language

Functions are replaced by parser, control, package.

 language

Functions are replaced by parser, control, package.

 language

parser: Parses an incoming packet according to structs,
typedefs, etc...

Functions are replaced by parser, control, package.

 language

parser: Parses an incoming packet according to structs,
typedefs, etc...
control: Modify a parsed packet in order to resent

Functions are replaced by parser, control, package.

 language

parser: Parses an incoming packet according to structs,
typedefs, etc...
control: Modify a parsed packet in order to resent
package: Defines the binding logic between the hardware
and P4 (e.g. control and data plane)

Functions are replaced by parser, control, package.

 language

parser: Parses an incoming packet according to structs,
typedefs, etc...
control: Modify a parsed packet in order to resent
package: Defines the binding logic between the hardware
and P4 (e.g. control and data plane)

Other interesting keywords such as state or tables exist but are
out of scope for this talk.

Functions are replaced by parser, control, package.

 language

parser: Parses an incoming packet according to structs,
typedefs, etc...
control: Modify a parsed packet in order to resent
package: Defines the binding logic between the hardware
and P4 (e.g. control and data plane)

Other interesting keywords such as state or tables exist but are
out of scope for this talk.

LET'S MAKE A TRANSPILER!

transpiler

WHAT IS A TRANSPILER?

transpiler

WHAT IS A TRANSPILER?

Nix -> P4 translator

transpiler

WHAT IS A TRANSPILER?

Nix -> P4 translator
P4 Compiler

transpiler

WHAT IS A TRANSPILER?

Nix -> P4 translator
P4 Compiler

Target compiler

transpiler

WHAT IS A TRANSPILER?

Nix -> P4 translator
P4 Compiler

Target compiler

What does it look like?

transpiler

source = {
 include = ["core.p4" "v1model.p4"];

 define = { "test" = "test2"; };
 headers = {
 const = {
 "MAX_HOPS" = { type = "int"; value = "10"; };
 "STANDARD" = { type = "int"; value = "0"; };
 "HOPS" = { type = "int"; value = "1"; };
 };

 header = { "type_t".content = [{ "tag" = "bit<8>"; }];
 "hop_t".content = [
 { "port" = "bit<8>"; }
 { "bos" = "bit<8>"; }
];
 "standard_t".content = [
 { "src" = "bit<8>"; }
 { "dst" = "bit<8>"; }
];
 };
 [...]
 };
in
 p4Platform.mkProgram {
 name = "test";
 src = (p4Platform.runTranspiler
 { p4Source = source; });
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

transpiler

source = {
 include = ["core.p4" "v1model.p4"];

 define = { "test" = "test2"; };
 headers = {
 header = { inherit ethernet_h ipv4_no_options_h; };
 typedef = { inherit macAddr ip4Addr; };
 };

 [...]
};
in
 p4Platform.mkProgram {
 name = "test";
 src = (p4Platform.runTranspiler
 { p4Source = source; });
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

WHICH WE CAN SIMPLIFY!

transpiler

header = {
 "ethernet_h".content = [
 { "dstAddr" = "macAddr"; }
 { "srcAddr" = "macAddr"; }
 { "etherType" = "bit<16>"; }
];
};

1
2
3
4
5
6
7

THANKS TO HELPERS!

transpiler

header = {
 "ethernet_h".content = [
 { "dstAddr" = "macAddr"; }
 { "srcAddr" = "macAddr"; }
 { "etherType" = "bit<16>"; }
];
};

1
2
3
4
5
6
7

THANKS TO HELPERS!

What does the end result looks like?

transpiler
transpiler:
mkHeader = header:
 concatStringsSep "\n\n" (mapAttrsToList (name: value:
 (if (value.union) then "header_union " else "header ")
 + name + " {\n " +
 (concatStringsSep "\n" (flatten (imap1 (_: v:
 (mapAttrsToList (name: value: " " + value + " " + name + ";") v)
) value.content))) + "\n}") header);

[...]
module:
header = mkOption {
 description = ''
 The list of headers of the program.
 '';
 default = { };
 type = types.attrsOf (types.submodule {
 options = {
 union = mkOption {
 type = types.bool;
 default = false;
 };
 content = mkOption {
 type = types.listOf (types.attrsOf types.str);
 default = [];
 };
 };

});

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

WHICH IS PARSED BY THIS

transpiler
transpiler:
mkHeader = header:
 concatStringsSep "\n\n" (mapAttrsToList (name: value:
 (if (value.union) then "header_union " else "header ")
 + name + " {\n " +
 (concatStringsSep "\n" (flatten (imap1 (_: v:
 (mapAttrsToList (name: value: " " + value + " " + name + ";") v)
) value.content))) + "\n}") header);

[...]
module:
header = mkOption {
 description = ''
 The list of headers of the program.
 '';
 default = { };
 type = types.attrsOf (types.submodule {
 options = {
 union = mkOption {
 type = types.bool;
 default = false;
 };
 content = mkOption {
 type = types.listOf (types.attrsOf types.str);
 default = [];
 };
 };

});

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

WHICH IS PARSED BY THIS

What does the end result looks like?

transpiler

/* This file has been auto-generated by Nix, do not edit it manually! */
#include <core.p4>
#include <v1model.p4>

#define test test2

const int HOPS = 1;
const int MAX_HOPS = 10;
const int STANDARD = 0;

typedef standard_metadata_t std_meta_t;

header standard_t {
 bit<8> src;
 bit<8> dst;
}

struct headers_t {
 type_t type;
 hop_t[MAX_HOPS] hops;
 standard_t standard;
}

parser MyParser(packet_in pkt, out headers_t hdr, inout meta_t meta, inout
 state start {
 [...]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

P4 CODE:

transpiler

/* This file has been auto-generated by Nix, do not edit it manually! */
#include <core.p4>
#include <v1model.p4>

#define test test2

const int HOPS = 1;
const int MAX_HOPS = 10;
const int STANDARD = 0;

typedef standard_metadata_t std_meta_t;

header standard_t {
 bit<8> src;
 bit<8> dst;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

The end result looks like this on BMV2:

transpiler

/* This file has been auto-generated by Nix, do not edit it manually! */
#include <core.p4>
#include <v1model.p4>

#define test test2

const int HOPS = 1;
const int MAX_HOPS = 10;
const int STANDARD = 0;

typedef standard_metadata_t std_meta_t;

header standard_t {
 bit<8> src;
 bit<8> dst;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

The end result looks like this on BMV2:

But what is BMV2?

GLAD YOU ASKED!

setup

GLAD YOU ASKED!

setup

“
The simple_switch architecture is the de-facto
architecture for most users, as it is roughly
equivalent to the "abstract switch model"

described in the .P4_14 spec

https://p4.org/specs

GLAD YOU ASKED!

setup

“
The simple_switch architecture is the de-facto
architecture for most users, as it is roughly
equivalent to the "abstract switch model"

described in the .P4_14 spec

Basically an interface for hardware targeting
the switch.

https://p4.org/specs

To use P4 you need a target, the three most common targets
are:

setup

To use P4 you need a target, the three most common targets
are:

setup

userland (eBPF, DPDK, etc)

To use P4 you need a target, the three most common targets
are:

setup

userland (eBPF, DPDK, etc)
hardware (FPGAs, custom ASIC)

To use P4 you need a target, the three most common targets
are:

setup

userland (eBPF, DPDK, etc)
hardware (FPGAs, custom ASIC)
emulated (BMV2)

To use P4 you need a target, the three most common targets
are:

setup

userland (eBPF, DPDK, etc)
hardware (FPGAs, custom ASIC)
emulated (BMV2)

Obviously, those need some kind of interface!

To use P4 you need a target, the three most common targets
are:

setup

userland (eBPF, DPDK, etc)
hardware (FPGAs, custom ASIC)
emulated (BMV2)

Obviously, those need some kind of interface!

The Abstract Switch Interface is usually used,
with a few per-device changes

To use P4 you need a target, the three most common targets
are:

setup

userland (eBPF, DPDK, etc)
hardware (FPGAs, custom ASIC)
emulated (BMV2)

Obviously, those need some kind of interface!

The Abstract Switch Interface is usually used,
with a few per-device changes

This also needs changes to the transpiler!

Introducing : FPGAs on Nix

setup

Introducing : FPGAs on Nix

setup

(Yes, really)

Introducing : FPGAs on Nix

setup

(Yes, really)

(I forgot to take the picture before going to FOSDEM
so imagine an FPGA sitting on a computer, with USB

and ethernet plugged in)

The core idea is:

setup

The core idea is:

setup

1. Add hardware definitions to Nix for FPGAs

The core idea is:

setup

1. Add hardware definitions to Nix for FPGAs
2. Add an auto-reload/deploy mechanism through

USB or custom interfaces (e.g. JTAG)

The core idea is:

setup

1. Add hardware definitions to Nix for FPGAs
2. Add an auto-reload/deploy mechanism through

USB or custom interfaces (e.g. JTAG)
3. Add a data plane mechanism for feeding data

from the host (further off).

The core idea is:

setup

1. Add hardware definitions to Nix for FPGAs
2. Add an auto-reload/deploy mechanism through

USB or custom interfaces (e.g. JTAG)
3. Add a data plane mechanism for feeding data

from the host (further off).

All of this is a work-in-progress for now.

The core idea is:

setup

1. Add hardware definitions to Nix for FPGAs
2. Add an auto-reload/deploy mechanism through

USB or custom interfaces (e.g. JTAG)
3. Add a data plane mechanism for feeding data

from the host (further off).

All of this is a work-in-progress for now.

But software P4 works!

konami-code

QUESTIONS?

konami-code

gauvain@govanify.com

(/resume.pdf)govanify.com

@GovanifY

THANK YOU!

mailto:gauvain@govanify.com
https://govanify.com/
https://twitter.com/GovanifY

secure-boot

ONE LAST THING...

