Contracts for free!

aka Nix runtime types as library.

https://functional.cafe/@yvan

The tale of an old issuel..

B NixOS / nix ' public 2 Sponsor ®Watch 113 ~
<> code (O Issues 1.7k 11 Pullrequests 300 () Actions [Projects () security |~ Insights

Static type system #14
edolstra opened this issue on May 7, 2012 - 15 comments

fa edolstra commented on May 7, 2012 Member | (@) -+

Nix won't be complete until it has static typing.

@ 91 3

https://github.com/NixOS /nix/issues/14

Does Nix really lack of a type system?

Without a type system, we got really inconsistent errors: it fails at
the last moment often far from where the mistake were actually
made, and reading stack trace is often helpless ..

Nix is designed as a dumb simple language ..

So, Nix invite us to build constructs in library-space!

Looking through the glass of nixpkgs.lib.types .. package are
functions, types are functions everything is a function?.

2In fact, it's functors!

Is it so bad to have type validator functions?

Nix expression evaluation (with nix-instantiate) is guaranteed
by design to terminate.

As unfair comparison: C++ template resolution could loop
infinitely ...

yants and contracts

| wrote contracts® (100 LoC) this summer while have quite no
internet connection and realize only later that yants* (by
@tazjin) already exist.

Fun fact, there are really similar! At the point, | wrote just before
this talk a contract.yants compatibility set.

3https://github.com/yvan-sraka/contracts
*https://code.tvl.fyi/about/nix/yants

Example of a simple contract

let Login = declare { name = "Login"; }
{ user = Email; password = Hash; };
users = contract { name = "valid users.json format"; }

(1ist0f Login) # defined just before!
(builtins.fromJSON
(builtins.readFile ./users.json));

Implementations differences

® Some usability differences: yants have struct and enum
keywords while contracts have a def one that help user
define composable requirement as data.

® yants fail on not required attribute set fields while
contracts allow them!

® contracts does not rely on nixpkgs (yants does).

® You can reuse types defined nixpkgs.lib.type in
contracts and use contracts types as NixOS options.

Recoverable errors!

nix-repl> json = "{}" # e.g. of a bad users.json file!
nix-repl> users = map (x: x.user) (builtins.fromJSON json)
nix-repl> builtins.tryEval users

This code will fail with this error (which is unrecoverable) ...
error: value is a set while a list was expected

contracts and yants solve that :)

Conclusion

You should use runtime type constructs! That one sane way to
save yourself while debugging expressions (rather than just rely on
builtins.trace builtins.deepSeq). You can opt in really
progressively and opt-out in a snap.

Does it really solve the problem? It's incomplete .. but there are
alternatives, e.g. starting a new thing from scratch: other
configuration languages with typing cue®, dahl®, nickel’, that
generates JSON and already lives in nixpkgs.

| personally a lot of affection for purenix® that outputs nix code.

Shttps://cuelang.org/
Shttps://dhall-lang.org/

"https:/ /nickel-lang.org/
8https://github.com /purenix-org/purenix

Q/A

	Q/A

