
Snabbflow: a scalable IPFIX exporter
A tour of the IPFIX exporter developed at SWITCH

Who we are

Alexander Gall

Network engineer at SWITCH,
Snabb contributor since 2014

alexander.gall@switch.ch

Max Rottenkolber

Works on Snabb since 2014

maximilian@igalia.com

Snabbflow
at SWITCH

Motivation, function,
deployment

Netflow at SWITCH

The concept of a “flow” is the primary mechanism used to analyze network traffic

● 5-tuple <src address, dst address, IP protocol, src port, dst port>
● Aggregates bytes/packets, additional custom fields (TCP flags, AS

numbers…)
● Evolved from Cisco-proprietary to IETF standard IPFIX
● Unsampled (process every packet) or sampled (process 1 in n packets)

In use at SWITCH since mid 1990s. Until a few years ago

● Provided in Hardware by the routers
● Unsampled

Modern routers moved to sampling to cope with high-volume traffic

Sampled vs Unsampled

Sampling approximates real values well for volume-based metrics. Why use
unsampled Netflow?

● Fine-grained analysis of security incidents
● Debugging of network problems for single flows, e.g.

○ TCP handshake
○ DNS transaction

Requires

● Move from router to external appliance for Netflow generation
● Find a scalable and cost-effective solution: Snabbflow

SWITCH Network

● Peak traffic values (aggregate external traffic, ingress + egress)
○ ~180Gbps
○ ~20Mpps
○ ~350k flows per second (>500kfps with aggressive port-scans)

● Aggregate IPFIX export data rate 200-300Mbps
● Average flow rate 200k/s, 1.5TiB flow data per day (~100 bytes/flow)
● Interface types: optical 10G, 100G soon 400G
● Until 2015 Netflow export on (Cisco) routers
● 2015-2020 commercial Netflow exporter using hardware acceleration
● Since 2020 Snabbflow

Per-PoP Exporter Architecture

● Optical taps on external interfaces to copy packets
● “Packet-Broker” to aggregate traffic to 2x100 Gbps links to Snabbflow

exporter
○ Use VLAN tags to identify original router ports
○ “Whitebox” switch

■ EdgeCore Wedge100BF-32x/AS9516-32D
■ Tofino/Tofino2 ASIC
■ P4-programmable
■ Separate project: https://github.com/alexandergall/packet-broker

● Snabbflow on commodity 1RU server
○ AMD Epyc or Intel Xeon, 12-24 cores, ~128GiB RAM for large flow tables
○ 2x100G Mellanox ConnectX-5 NICs

https://github.com/alexandergall/packet-broker

SWITCH
border router

Foreign BR1

8-port splitter

Packet Broker

Snabbflow

Foreign BR2
Foreign BR3

Foreign BR8

adds vlan for each
“color“ so we know
where packets came
from

V
lan 151

V
lan 152

V
lan 153

V
lan 154

V
lan 155

Foreign BRx

V
lan 156

V
lan 165

V
lan 166

Features of
Snabbflow

snabb ipfix probe

Scaling, configuration, monitoring
and their implementation

Built with

- A toolkit for building fast packet processing applications using a
high-level programming language

- Written in Lua (using the amazing LuaJIT compiler)!

- Packet I/O without going through the kernel (kernel-bypass /
userspace networking)

- Open source and independent (not sponsored by any $vendor)

● Simple > Complex
● Small > Large
● Commodity > Proprietary

Recording packet metadata in a flow table

function FlowSet:record_flows(timestamp)
 local entry = self.scratch_entry

 for i=1,link.nreadable(self.incoming) do
 local pkt = link.receive(self.incoming)
 self.template:extract(pkt, timestamp, entry)

 local lookup_result = self.table:lookup_ptr(entry.key)
 if lookup_result == nil then
 self.table:add(entry.key, entry.value)
 else
 self.template:accumulate(lookup_result, entry, pkt)
 end
 packet.free(pkt)
 end
end

Flushing ipfix records

-- Walk through flow set to see if flow records need to be expired.
-- Collect expired records and export them to the collector.
function FlowSet:expire_records(out, now)
 local cursor = self.expiry_cursor
 …
 for i = 1, self.table_tb:take_burst() do
 local entry
 cursor, entry = self.table:next_entry(cursor, cursor + 1)
 …
 if entry then
 …
 self:add_data_record(entry.key, out)
 end
 end
 if self.flush_timer() then self:flush_data_records(out) end
end

High-level overview

100G NIC
(Driver written in
Lua)

Snabb ipfix
probe

tun/tap
(Linux kernel
network stack)

ipfix
collector

Scaling via hardware RSS

100G NIC
(Driver written in
Lua)

Snabb
ipfix
probe

RSS forwards distinct sets of
flows to distinct Snabbflow
processes

Horizontal scaling!

Circle = CPU core

Scaling via software RSS

Snabb
ipfix
probe

IP
template

DNS/HTTP
template

Software RSS forwards distinct sets of flows
to distinct exporter processes extracting
different sets of metadata.

Isolate workloads! (Complex packet
inspection does not bog down basic
metadata export)

Circle = CPU core

“Apps” and multi-processing

ConnectX
Driver
App

ARP App

input

output

Snabb programs are organized in “apps”
(independent packet processing
components)

Communicate with each other via “links”:

p = link.receive(input)

link.transmit(output, p)

“Apps” and multi-processing (lib.interlink)

cpu core 1 cpu core 1

ConnectX
Driver
App

ARP App

Interlink
Transmitter
App

Interlink
Receiver
App

Interlink

Packets can be shared with low
overhead across CPU core boundaries
using “interlinks”.

Link interface remains orthogonal:

p = link.receive(input)

link.transmit(output, p)

lib.ptree

Control plane (manager)

Data plane (worker)

- Can query and update data-plane configuration
- Knows about data-plane state
- No particular latency requirements
- Manages multiple data-plane workers

(on dedicated CPU cores)

- Soft real-time! No messing around!
- Receives configuration updates from manager
- Writes state counters to shared memoryData plane (worker)

Data plane (worker)

lib.yang

Application configuration and state are described in a YANG schema.

$ snabb config set my-process / < ipfix.conf

$ snabb config get-state my-process \
/snabbflow-state/exporter[name=ip]

packets-dropped 0;
packets-ignored 129326;
packets-received 499996;
template {
 id 1512;
 flow-export-packets 115;
 flows-exported 1318;
 packets-processed 12034;
 …

snabb-snabbflow-v1.yang

module snabb-snabbflow-v1 {
 …
 container snabbflow-config {
 description
 "Configuration for the Snabbflow IPFIX exporter.";

 list interface {
 key device;
 unique "name vlan-tag";

 description
 "Interfaces serving as IPFIX Observation Points.";

 leaf device {
 type pci-address;
 description
 "PCI address of the network device.";
 }
 …

- Schema defines both valid configuration
and state trees

- YANG is expressive: control-plane can
effectively reject invalid data-plane
configurations

- Snabb programs translate valid
configurations to app and link networks
running in data-plane

Flight recorder

- Minimal overhead: always on! (if you want it)
- Stores useful data

- JIT trace info
- Trace profiles (sampled)
- High-frequency event log (sampled)

- Can be analyzed while running or post mortem
- tar cf blackbox.tar /var/run/snabb; scp blackbox.tar …

Where does my program spend
its time?

Does the JIT have issues
generating efficient code?

Includes full IR / assembly
dump for each compiled trace!

Latency histograms derived
from event log

Here: ipfix app takes ~35us
to process a batch of
packets.

Useful for debugging tail
latencies.

Can add arbitrary
application-specific,
user-defined events.

If you write a Snabb program today

You can reuse all of these components and more!

Thanks for your
attention!

Questions?

GitHub: snabbco/snabb

Snabbflow:
alexander.gall@switch.ch

Commercial support for Snabb:
maximilian@igalia.com

