meta netdevices

Daniel Borkmann, Isovalent

Nikolay Aleksandrov, Isovalent

@
Goal of this talk 8:9 @,

How can we leverage BPF infrastructure &

networ

King features to achieve maximum

nerformance for K8s Pods?

Kubernetes, Pods, CNI in a nutshell a,

Default Case:

Upper stack
(IP, netfilter,
routing, ...)

L

veth veth

Kubernetes, Pods, CNI in a nutshell

Cilium as CNI: Upper stack
: (IP, netfilter,

- Setup netdevs and move to netns)
routing, ...)

- IP & route assignment (IPAM)
- BPF datapath
- Features on top via BPF:
- Policy enforcement
- Load-balancing
- Bandwidth management
- etc

> veth veth

Gregg: Computing Performance: What’s On the Horizon

My Prediction: OS performance

Linux: increasing complexity & worse perf defaults

* Becomes so complex that it takes an OS team to make it perform well. This assumes that the defaults rot,
because no perf teams are running the defaults anymore to notice (e.g., high-speed network engineers
configure XDP and QUIC, and aren’t looking at defaults with TCP). A bit more room for a lightweight kernel
(e.g., BSD) with better perf defaults to compete. Similarities: Oracle DB vs MySQL; MULTICS vs UNIX.

“.. becomes so complex that it takes an OS team to make it perform well ...”

SREcon2022: “Computing Performance: What's On the Horizon“

https://www.usenix.org/conference/srecon22apac/presentation/gregg

oLe
Defaults, and where to go from here ... 08.

Given two K8s nodes with 100Gbit NICs, single flow:

« What's the default Pod-Pod baseline?
« Where are bottlenecks, how can they be overcome?
« Can we provide better defaults?

oLe
Defaults, and where to go from here ... 08.

Why bothering with single stream performance?

« Coping with growing NIC speeds 100/200/400Gbit
« Big Data/Al/ML and other data intensive workloads
« Generally freeing up resources to save costs

O
g0

Defaults, and where to go from here ... og®

Assumptions for our tests:

« K8s worker nodes are generic for any kind of workload
- Large number of users don’t custom tune and mostly stick
to OS defaults.

Pods per Node

Median Containers per Host
50

mﬂ . .

2018 2019 2020 11-15 16-25 26-50

N
o

[
o

e: Sysdig 2022 Cloud Native Security and Usage Report

Cilium: Basic/compat setting

Default Case: Upper stack
: (IP, netfilter,

- Routing via upper stack .
routing, ...)

- Potential reasons:
- Cannot replace kube-proxy
- Custom netfilter rules
- Just ‘went with defaults’

> veth veth

O
g0

Default case, results: 0.0

TCP stream single flow Pod to Pod over wire (higher is better)

[veth + upper stack forwarding | host (baseline/best case)

50,000

40,000

30,000

20,000

10,000

Mbps

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

Cilium: BPF host routing

- Reuting-viaupperstack

BPF host routing: Upper stack
. . (IP, netfilter,
: routing, ...)

> veth veth

11

Cilium: BPF host routing

BPF host routing:

- Routing via tc BPF layer only
- Fast netns switch on ingress
- Neighbor resolution on egress,
- If needed bpf _fib_lookup()

Virtual Ethernet Device Optimization with eBPF: https://cilium.io/blog/2020/11/10/cilium-19/#veth

12

https://cilium.io/blog/2020/11/10/cilium-19/#veth

Cilium: BPF host routing

dev = ops->ndo_get_peer_dev(dev)
skb_scrub_packet()

BPF H skb->dev = dev Up
- Rou| sch_handle_ingress():

- Fas] - goto another_round

- Neig -no per-CPU backlog queue

- If needed bpf_fib_lookup() —————.

Virtual Ethernet Device Optimization with eBPF: https://cilium.io/blog/2020/11/10/cilium-19/#veth 13

https://cilium.io/blog/2020/11/10/cilium-19/#veth

Cilium: BPF host routing

BPF host routing: Up

- Routing via tc BPF layer only

- Fast netns switch on ingress

- Neighbor resolution on egress,
- If needed bpf _fib_lookup()

veth veth

N eBPF _ (netns)

Virtual Ethernet Device Optimization with eBPF: https://cilium.io/blog/2020/11/10/cilium-19/#veth 14

https://cilium.io/blog/2020/11/10/cilium-19/#veth

Cilium: BPF host routing

Internals:

ip_route_output_flow()

skb_dst_set()
ast U
BPF Y ip_finish_output2() (“5)
- Rou| - fills in neighbor (L2) info roij

- Fast| - retains skb->sk till Qdisc on phys

- Neig, o
_If needed bpf_fib_lookup() w

veth veth

KeBPF _ (netns)

Virtual Ethernet Device Optimization with eBPF: https://cilium.io/blog/2020/11/10/cilium-19/#veth

15

https://cilium.io/blog/2020/11/10/cilium-19/#veth

Cilium: BPF host routing

BPF host routing: Up
- Routing via tc BPF layer only (IP,

i i : rou
- Fast netns switch on ingress |

- Neighbor resolution on egress,
- If needed bpf _fib_lookup()

veth) veth

A eBPF _ (netns)

Virtual Ethernet Device Optimization with eBPF: https://cilium.io/blog/2020/11/10/cilium-19/#veth 16

https://cilium.io/blog/2020/11/10/cilium-19/#veth

BPF host routing case, results: 98: a,

TCP stream single flow Pod to Pod over wire (higher is better)

[veth + upper stack forwarding B veth + BPF host routing [host (baseline/best case)

50,000
40,000
30,000
20,000

10,000

Mbps

17

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

O
g0

BPF host routing case, with 8k MTU: Og®

TCP stream single flow Pod to Pod over wire, 8k MTU (higher is better)

[veth + upper stack forwarding [veth + BPF host routing [host (baseline/best case)

100,000
75,000 -
50,000 -

25,000

Mbps

18

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

Cilium: meta devices for BPF

BPF host routing +
meta devices:

- Routing via tc BPF layer only
- Fast netns switch on ingress
- Fast netns switch on egress
- BPF prog part of device
- t¢ BPF moves into device
- Changeable only from
host-side (Cilium)

met? meta

D Henplens

meta prototype: https://github.com/cilium/linux/commits/pr/dev-meta

19

https://github.com/cilium/linux/commits/pr/dev-meta

Cilium: meta devices for BPF

I" Pod with veth:

-
1 N
napi_poll inet_sendmsg [j
sock_sendmsg |

: [pick_next_ta.. [|
q __schedule
run_ksoftirqd - [schedule

—

ksoftirqd/0

Pod with
meta:

20

:A’U, 3

Cilium: meta devices for BPF k=

Internals for veth (today):

Pod with veth: veth_xmit()
I - scrubs packet meta data

]II= - enques to per-CPU backlog queue
| - net_rx_action picks up packets
'. from queue in host
|II ll. - deferral can happen to ksoftirqd
I I i - Cilium’s BPF prog called only on
ﬂunun = L tc ingress to redirect to phys dev
__bpf_redir.. H

'skb_do_redi.. | lip_queve xmit |
__netif_rec.. | _tcp_transmit_skb |||
(EmetifTrece;. |

Il
| T = |
| find_bus..

] |load_bal.. ||
napi_poll § | newidle_ba.. |]]| inet_sendmsg
| pick_next_ta.. [sock_sendmsg |
__do_softirq __schedule __sys_sendto
__Xx64_sys_sen..
I §mpb99t_thread_fn 'do_syscall_64
kthread Ml l_llI

! [.. _send

Cret_from fork
ksoftirqd/0 ‘netperf s ——————
‘netperf

21

Cilium: meta devices for BPF

=

=al

hi..
d h -
Pod wit

dma..
meta: mix..

|
[l Internals for meta (new):

Pod
|
= meta_xmit()
ioﬁ| - scrubs packet meta data
ml.. | - switches netns to host

mix5.. || - Cilium’s BPF prog called for meta
~dev_h.. - Redirect to phys dev directly
schd. .

Il without backlog queue

\

skb_do_redirect
| meta_xmit |
|
__dev_queue_xmit|

—qdis..
_dev_qu.. |
(—bpf_redir.

sl
|load_bal.. || ||
__napi_poll § | newidle_ba..]|
| pick_next_ta.. [
__do_softirg __schedule

__netif_rec.. —
O | (e
| |

inet_sendmsg [
sock_sendmsg

I
ksoftirqd/0

22

static netdev_tx_t meta_xmit(struct sk _buff xskb, struct net_device xdev)

{ O

struct meta *meta = netdev_priv(dev); O .
struct net_device xpeer; .

meta netdevs o0
rcu_read_lock(); .

peer = rcu_dereference(meta->peer);
if (unlikely(!peer || skb_orphan_frags(skb, GFP_ATOMIC)))
goto drop;

Less is more, ~500 LoCs for the device driver

meta_scrub_minimum(skb);
skb->dev = peer;

“meta” given flexibility to implement driver

prog = rcu_dereference(meta->prog);

business logic fully in BPF. if (unlikely(!prog))
goto drop;
switch (bpf_prog_run(prog, skb)) {

‘hil; H case META_OKAY:
Compatibility with tc BPF programs so that et = ST SR
for newer kerr]EIS they can be migratEd skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);

. . . __netif_rx(skb);

easily into meta device. breaks

case META_REDIRECT:
skb_do_redirect(skb);

Does not import all the complexity around break;
. . . META_DROP:
multi-queue / XDP handling as in veth. 2
drop:
. . . kfree_skb(skb);
Could operate as single or paired device mode. break;

}

rcu_read_unlock();

return NETDEV_TX_OK;
¥

meta prototype: https://github.com/cilium/linux/commits/pr/dev-meta

https://github.com/cilium/linux/commits/pr/dev-meta

O
g0

meta + BPF host routing case, results: Og®

TCP stream single flow Pod to Pod over wire, 8k MTU (higher is better)

[veth + upper stack forwarding [veth + BPF host routing [meta + BPF host routing
" host (baseline/best case)

100,000
tput as high as host
75,000

50,000

25,000

Mbps

24

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

meta + BPF host routing case, results:

g8 Y

latency as low as host

Latency in usec Pod to Pod over wire (lower is better)

[veth + BPF host routing [meta + BPF host routing | host (baseline/best case)
25

20 -

10 -

MIN P90 P99

25

BPF host routing + Up
meta devices + (IP,
BIG TCP: rou

- Currently only for IPv6* (v5.19+)

- More aggressive GRO/GSO - |

batching with HBH header
- Supported by Cilium 1.13

met? meta

§,,_....'3".GTCP ----- ﬁeB/;ﬂ(netns))

Cilium + BIG TCP, KubeCon North America 2022: https://kccncna2022.sched.com/event/182DB, * IPv4 BIG TCP merged this week for v6.3+

https://kccncna2022.sched.com/event/182DB

BIG TCP + BPF host routing case, results:

TCP stream single flow Pod to Pod over wire, 8k MTU (higher is better)

[veth + upper stack forwarding B veth + BPF host routing [meta + BPF host routing
[host (baseline/best case)

100,000

75,000

50,000

25,000

Already on limit, BIG TCP
~85 usec/MB doesn’t shrink usec/MB
further.

\{eth + upper currently
not working / broken

Mbps

27

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

. oo
BIG TCP + BPF host routing case, results: ng
)

Latency in usec Pod to Pod over wire (lower is better
[veth + BPF host routing [meta + BPF host routing | host (baseline/best case)
100

75
latency as low as host

50

25

MIN P50 P90 P99

28

Remaining biggest offender is copy to user

- read
- 63.41% entry SYSCALL 64 after_hwframe
- 63.36% do_syscall_64
- 63.20% __x64 sys read
- 63.18% ksys_read
- 63.01% vfs_read
- 62.92% new_sync_read
- 62.85% sock _read_iter
- 62.79% sock recvmsg
- 62.77% inetb_recvmsg
- 62.65% tcp_recvmsg

- Ccp_recvmsg_locke
+ 58.27% skb_copy datagram_iter
+ 2= tcp cleanup rbu

0.56% release_sock

O
g0

oge

The Path To TCP 4K MTU and RX ZeroCopy: https://legacy.netdevconf.info/0x14/session.html?talk-the-path-to-tcp-4k-mtu-and-rx-zerocopy

29

https://legacy.netdevconf.info/0x14/session.html?talk-the-path-to-tcp-4k-mtu-and-rx-zerocopy

Cilium: Can we push even further? BIG TCP + ZC &

BPF host routing +
meta devices +
BIG TCP +

TCP mmap?

- Currently not possible
- BIG TCP generates frag_list
- TCP ZC works on skb frags[]
- Combining has the highest
potential for pushing
boundaries further ...
- Let's look at just TCP ZC

®
g

®
e°

App:
TCP mmap

met? meta

BIG TCP

@/63/;;‘ (netns))

N

&

30

BPF host routing + Up
meta devices + (IP,
TCP mmap rou
: App:

- Not as straightforward TCP mmap
- Needs app changes for ZC :
on RX and/or TX
- Needs driver changes to
implement pseudo
header/data split if not
natively done by HW

met? meta

............................. ﬂeB/F}F_‘ (netns))

mix5 header split: https://github.com/cilium/linux/tree/test/zc-hdsplit

https://github.com/cilium/linux/tree/test/zc-hdsplit

| g
TCP ZC, header split and other caveats Oa®

Header/data split:

Eth + IPv4/6 + TCP Payload Payload : | data part is mmaped
(skb linear area) (4k page) (4k page)
N J
Y
4k MTU (4168 — 4096 data + 72 headers)
N v J

8k MTU (8264 — 2*4096 data + 72 headers)

See Eric’s talk for details, e.g. TCP WSCALE needs to be raised to 12 to get alighed RWIN to avoid partially filled pages.
Mileage varies on driver/HW support on header/data split, e.g. we implemented a PoC for mIx5 given not upstream.

Good example application for RX & TX TCP zero-copy is tcp_mmap in networking selftests.

The Path To TCP 4K MTU and RX ZeroCopy: https://legacy.netdevconf.info/0x14/session.html?talk-the-path-to-tcp-4k-mtu-and-rx-zerocopy 32

https://legacy.netdevconf.info/0x14/session.html?talk-the-path-to-tcp-4k-mtu-and-rx-zerocopy
https://github.com/cilium/linux/commits/test/zc-hdsplit
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c
https://legacy.netdevconf.info/0x14/session.html?talk-the-path-to-tcp-4k-mtu-and-rx-zerocopy

TCP ZC, header split and other caveats

Various settings need to be considered:

- mIx5 (mainly just our PoC): ethtool --set-priv-flags eth® rx_striding rq off

- MTU is set to 4168 (4k) or 8264 (8k), implicitly affects TCP ADVMSS

- For pinning TCP WSCALE the TCP rmem/wmem must be adapted e.g. "4096 67108864 134217728"
- For TX zero-copy optmem needs tuning: sysctl net.core.optmem_max=1048576

- Contention/overhead in IOMMU and page clearing: iommu=off, init_on_alloc=0 init_on_free=0
- Page recycling from page pool cannot be reused anymore

Header/data split could be a useful addition for ethtool (Windows actually has a config framework for
splitting).

TCP zero-copy benefits might be limited if application needs to pull data into cache.

The Path To TCP 4K MTU and RX ZeroCopy: https://legacy.netdevconf.info/0x14/session.html?talk-the-path-to-tcp-4k-mtu-and-rx-zerocopy

33

https://learn.microsoft.com/en-us/windows-hardware/drivers/network/header-data-split-architecture
https://legacy.netdevconf.info/0x14/session.html?talk-the-path-to-tcp-4k-mtu-and-rx-zerocopy

O
g0

TCP ZC + BPF host routing case, results: Oa®

TCP stream single flow Pod to Pod over wire, 4k MTU (higher is better)

[veth + upper stack forwarding [veth + BPF host routing [meta + BPF host routing
[host (baseline/best case)

100,000
(skb frags orphaned,
kernel does copy,
75,000 ZC has no effect)
50,000
25,000

Overhead looks promising, but
not reaching 100Gbps with 4k with
the PoC. Improvements possible.

Mbps

34

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

O
g0

TCP ZC + BPF host routing case, results: Og®

TCP stream single flow Pod to Pod over wire, 8k MTU (higher is better)

[veth + upper stack forwarding [veth + BPF host routing [meta + BPF host routing
[host (baseline/best case)

100,000
(skb frags orphaned,
kernel does copy,
75,000 ZC has no effect)
50,000
25,000

Overhead reduced from
85->27 usec/MB!

Mbps

35

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/net/tcp_mmap.c

O
g0

Recap on defaults and how to reduce cost og®

TCP stream single flow Pod to Pod over wire (lower is better)

200 [default (veth + upper stack)

above with 8k MTU
(no app (with app

changes) = changes) B above with BPF host
150 routing

above with meta device
B above with BIG TCP

100 B above with ZC instead of
101 BIG TCP
92
85
Future directions:
50 - NIC drivers with header/data split setting

- Head page header packing
- Head page recycling

- BIG TCP with TCP ZC covering frag_list

- - Pushing BIG TCP onto wire if HW supports it
Cost in usec / MB

36

ISOVALENT

U,
27

A

Thank you! Questions?

github.com/cilium/cilium meta device: github.com/cilium/linux/commits/pr/dev-meta

header/data split: github.com/cilium/linux/commits/test/zc-hdsplit

cilium.io

ebpf.io

https://github.com/cilium/linux/commits/pr/dev-meta
https://github.com/cilium/linux/commits/test/zc-hdsplit

