the challenges of minimalism.



minimalism.






minimalism. minimalism.









the right thing. = worse is better.



simplicity. The design must be simple, both in implementation
and interface. It is more important for the interface to be simple
than the implementation.

correctness. The design must be correct in all observable
aspects. Incorrectness is simply not allowed.

consistency. The design must be consistent. A design is
allowed to be slightly less simple and less complete to avoid
inconsistency. Consistency is as important as correctness.

completeness. The design must cover as many important
situations as is practical. All reasonably expected cases must
be covered. Simplicity is not allowed to overly reduce
completeness.

simplicity. The design must be simple, both in implementation
and interface. It is more important for the implementation to be
simple than the interface. Simplicity is the most important
consideration in a design.

correctness. The design should be correct in all observable
aspects. It is slightly better to be simple than correct.

consistency. The design must not be overly inconsistent.
Consistency can be sacrificed for simplicity in some cases, but
it is better to drop those parts of the design that deal with less
common circumstances than to introduce either complexity or
inconsistency in the implementation.

completeness. The design must cover as many important
situations as is practical. All reasonably expected cases should
be covered. Completeness can be sacrificed in favor of any
other quality. In fact, completeness must be sacrificed
whenever implementation simplicity is jeopardized.
Consistency can be sacrificed to achieve completeness if
simplicity is retained; especially worthless is consistency of
interface.



simplicity. The design must be
simple, both in implementation
and interface.

It is more important for the
interface to be simple than the
implementation.

simplicity. The design must be
simple, both in implementation
and interface.

It is more important for the

implementation to be simple than

the interface.

Simplicity is the most
important consideration in a
design.



correctness. The design must be correctness. The design should

correct in all observable aspects. be correct in all observable
aspects.

Incorrectness is simply not

allowed. It is slightly better to be simple
than correct.




consistency. The design must be
consistent.

A design is allowed to be slightly
less simple and less complete to
avolid inconsistency.

Consistency is as important as
correctness.

consistency. The design must not
be overly inconsistent.

Consistency can be sacrificed for
simplicity in some cases,

but it is better to drop those patrts
of the design that deal with less
common circumstances than to
introduce either complexity or

inconsistency in the

implementation.




completeness. The design must
cover as many important
situations as is practical. All
reasonably expected cases must
be covered.

Simplicity is not allowed to overly
reduce completeness.

completeness. The design must
cover as many important
situations as is practical. All
reasonably expected cases
should be covered.

It can be sacrificed in favor of any

other quality. It must be sacrificed

if implementation simplicity is at
risk. Consistency can be
sacrificed to get completeness if

simplicity is retained.




both work.



when things go wrong.












modular.



L
UARO
C
ks















luarocks.fs.unix luarocks.fs.lua

T
(D)




luarocks.fs.unix luarocks.fs.lua

luarocks.fs.bsd
((@,ﬁ f®>)




luarocks.fs.lua

luarocks.fs.win32




S luarocks install luarocks



scope.



mechanisms, not policies.



when in doubt, make it extensible.



extensible url protocols.



extensible build types.



one build type
to rule (80% of) them all.



sham@proxy lluarocks cont ig
cept_unknouwn_f ields = false
ch = "1inux—x86_64"
wche = {

luajit_version_checked = true

iche_fail_timeout = 86400
iche_t imeout = 60
eck_certif icates = false

ake_generator = "Unix Makef iles"
infig_files = {
nearest = "/Users/hishamn/.luarocks/conf ig-5.4.1ua",

system = {
file = "/System/Sett ings/luarocks/conf ig-5.4.1ua",
found = true

}‘

user = {
file = "/Users/hishan/.luarocks/conf ig-5.4.lua",
found = true

¥

nnect ion_t imeout = 308
ploy_bin_dir = "/System/Al iens/LuaRocks/bin"

ploy_lib_dir = "/System/Al iens/LuaRocks/1ib/lua/5.4"
ploy_lua_dir = "/System/Al iens/LuaRocks/share/lua/5.4"
ps_mode = “‘one"

sabled_servers = {}

(port_path_separator =

cternal_deps_dirs = {
"susr/local",

cternal_deps_patterns = {
bin = {
II?II
¥,
include = {
ll? » hll
¥,
lib = {
"lib?.a",
"1ib?.s0",

rocks_trees = 1

{

name = "user",

root = "/Users/hishan/.luarocks"
}l
{

name = "system",

root = "/System/Aliens/LuaRocks"
¥

¥
runt ime_external_deps_patterns = {
bin = {
ll?ll
}I
include = {
II? .hll
}‘
lib = {
"1ib?.s0",
"1ib?.s0.x"
¥
¥
runt ime_external_deps_subdirs = {
bin = "bin",

include = "include",
lib = {
"1ib",
"1ib64"
¥
¥
static_lib_extension = "a"
sysconfdir = "/System/Sett ings/luarocks"
target_cpu = "x86_64"
upload = {
api_version = "1",
server = "https://luarocks.org”,
tool_version = "1.68.8"
H

user_agent = "LuaRocks/3.9.1 1inux-x86_64"
variables = {

AR = "ar",
BUNZIP2 = "bunzip2",
CC = "gec",
CFLAGS = "-02 -fPIC",

CLUMOMN — "' _an



ugh.



‘&’ LuaRocks

zero dependencies
dog-foods optional deps
well-defined scope

minimal base, yet extensible



a large system that tries to be all things
to all people :(



what happened? two things.



reducing complexity
+
shifting complexity around



| 2484

2160

1027 4,700 L1, -

Ce——

918



minimalistic software maintenance?



setting boundaries.



simplicity over compatibility.



I have intentionally caricatured the
worse-is-better philosophy to convince you that
it is obviously a bad philosophy and that the
New Jersey approach is a bad approach.

However, I believe that worse-is-better, even in
its strawman form, has better survival
characteristics than the-right-thing, and that
the New Jersey approach when used for
software is a better approach than

the MIT approach.




lessons learned?



‘&’ LuaRocks

zero dependencies for users
simplified scope

minimal base that is
extensible, not extended



simplicity.
correctness.
completeness.

consistency.



simplicity over time.
correctness over time.
completeness over time.

consistency over time.



thank you.






Taxonomy of Package Management
in Programming L.anguages and Operating Systems

Hisham Muhammad
Kong Inc.
hisham@konghg.com

Abstract

Package management is instrumental for programming lan-
guages and operating systems, and yet it is neglected by both
areas as an implementation detail. For this reason, it lacks the
same kind of conceptual organization: we lack terminology
to classify them or to reason about their design trade-offs. In
this paper, we share our experience in both OS and language-
specific package manager development, categorizing families
of package managers and discussing their design implications
beyond particular implementations. We also identify possibil-
ities in the still largely unexplored area of package manager
interoperability.

Keywords package management, operating systems, module
systems, filesystem hierarchy

Lucas C. Villa Real
IBM Research
lucasvr@br.ibm.com

Michael Homer
Victoria University of Wellington -
Wellington, New Zealand
mwh@ecs.vuw.ac.nz

for node. js [3], a JavaScript environment. On a Mac system,
the typical way to install command-line tools such as npm
is via either Homebrew [4] or MacPorts [5], the two most
popular general-purpose package managers for macOS. This
is not a deliberately contrived example; it is the regular way
to install development modules for a popular language in a
modern platform.

The combinations of package managers change as we move
to a different operating system or use a different language.
Learning one’s way through a new language or system, nowa-
days, includes learning one or more packaging environments.
As a developer of modules, this includes not only using pack-
age managers but also learning to deploy code using them,
which includes syntaxes for package specification formats, de-
pendency and versioning rules and deployment conventions.
Simply ignoring these environments and managing modules



