
the challenges of minimalism.

Hisham Muhammad

FOSDEM 2023, Brussels
2023-02-04

minimalism.

minimalism. minimalism.

the right thing. worse is better.

the
right thing.

worse
is better.

simplicity. The design must be simple, both in implementation
and interface. It is more important for the implementation to be
simple than the interface. Simplicity is the most important
consideration in a design.

correctness. The design should be correct in all observable
aspects. It is slightly better to be simple than correct.

consistency. The design must not be overly inconsistent.
Consistency can be sacrificed for simplicity in some cases, but
it is better to drop those parts of the design that deal with less
common circumstances than to introduce either complexity or
inconsistency in the implementation.

completeness. The design must cover as many important
situations as is practical. All reasonably expected cases should
be covered. Completeness can be sacrificed in favor of any
other quality. In fact, completeness must be sacrificed
whenever implementation simplicity is jeopardized.
Consistency can be sacrificed to achieve completeness if
simplicity is retained; especially worthless is consistency of
interface.

simplicity. The design must be simple, both in implementation
and interface. It is more important for the interface to be simple
than the implementation.

correctness. The design must be correct in all observable
aspects. Incorrectness is simply not allowed.

consistency. The design must be consistent. A design is
allowed to be slightly less simple and less complete to avoid
inconsistency. Consistency is as important as correctness.

completeness. The design must cover as many important
situations as is practical. All reasonably expected cases must
be covered. Simplicity is not allowed to overly reduce
completeness.

simplicity. The design must be
simple, both in implementation
and interface.

It is more important for the
interface to be simple than the
implementation.

the
right thing.

worse
is better.

simplicity. The design must be
simple, both in implementation
and interface.

It is more important for the
implementation to be simple than
the interface.

Simplicity is the most
important consideration in a
design.

correctness. The design must be
correct in all observable aspects.

Incorrectness is simply not
allowed.

correctness. The design should
be correct in all observable
aspects.

It is slightly better to be simple
than correct.

the
right thing.

worse
is better.

the
right thing.

worse
is better.

consistency. The design must be
consistent.

A design is allowed to be slightly
less simple and less complete to
avoid inconsistency.

Consistency is as important as
correctness.

consistency. The design must not
be overly inconsistent.

Consistency can be sacrificed for
simplicity in some cases,

but it is better to drop those parts
of the design that deal with less
common circumstances than to
introduce either complexity or
inconsistency in the
implementation.

the
right thing.

worse
is better.

completeness. The design must
cover as many important
situations as is practical. All
reasonably expected cases must
be covered.

Simplicity is not allowed to overly
reduce completeness.

completeness. The design must
cover as many important
situations as is practical. All
reasonably expected cases
should be covered.

It can be sacrificed in favor of any
other quality. It must be sacrificed
if implementation simplicity is at
risk. Consistency can be
sacrificed to get completeness if
simplicity is retained.

both work.

when things go wrong.

modular.

luarocks.fs.lualuarocks.fs.unix

luarocks.fs.lualuarocks.fs.unix
luarocks.fs.bsd

luarocks.fs.lualuarocks.fs.win32

$ luarocks install luarocks

scope.

mechanisms, not policies.

when in doubt, make it extensible.

extensible url protocols.

extensible build types.

one build type
to rule (80% of) them all.

ugh.

zero dependencies

dog-foods optional deps

well-defined scope

minimal base, yet extensible

a large system that tries to be all things
to all people :(

what happened? two things.

1 reducing complexity
≠

shifting complexity around

2 the world is dynamic

minimalistic software maintenance?

setting boundaries.

simplicity over compatibility.

 I have intentionally caricatured the
worse-is-better philosophy to convince you that
it is obviously a bad philosophy and that the
New Jersey approach is a bad approach.

However, I believe that worse-is-better, even in
its strawman form, has better survival
characteristics than the-right-thing, and that
the New Jersey approach when used for
software is a better approach than
the MIT approach.

“

”

lessons learned?

zero dependencies for users

simplified scope

minimal base that is
extensible, not extended

simplicity.

correctness.

completeness.

consistency.

simplicity over time.

correctness over time.

completeness over time.

consistency over time.

thank you.

