
Loupe: Designing Application-driven Compatibility Layers 
in Custom Operating Systems

Pierre Olivier, The University of Manchester
pierre.olivier@manchester.ac.uk

Joint work with Hugo Lefeuvre1, Gaulthier Gain2, Vlad-Andrei Bădoiu3, Daniel Dinca3, Vlad-Radu 
Schiller1, Costin Raiciu3, and Felipe Huici4

1The University of Manchester, 2University of Liège, 3Politehnica University of Bucharest, 4Unikraft.io

mailto:pierre.olivier@manchester.ac.uk


Custom Oses & Compatibility

▷ We still need custom (research/prototype) Oses

2



Custom Oses & Compatibility

▷ We still need custom (research/prototype) Oses
▷ These are only as good/popular as the applications 

they can run

3



Custom Oses & Compatibility

▷ We still need custom (research/prototype) Oses
▷ These are only as good/popular as the applications 

they can run
▷ Compatibility with existing applications is key

– To build a community
– To attract potential sponsors/investors
– To gather early numbers
– etc. 4



How is Compatibility Achieved?

▷ Porting is not sustainable

5



How is Compatibility Achieved?

▷ Porting is not sustainable
▷ Transparent compatibility:

emulate a popular OS e.g. Linux
– Source level
– Binary Libc level
– Binary system call level

6



Compatibility Seemingly Takes Effort

7

▷ Linux has 360+ system calls
▷ Some are vectored (e.g. ioctl)
▷ Beyond system call: virtual filesystems

(/proc, etc.)
▷ Hinders the development

of custom Oses



Compatibility Seemingly Takes Effort

8

1000+ papers in 
SOSP/OSDI/ASPLOS/EuroSys 
over the last 10Y

▷ Linux has 360+ system calls
▷ Some are vectored (e.g. ioctl)
▷ Beyond system call: virtual filesystems

(/proc, etc.)
▷ Hinders the development

of custom Oses



Building Compatibility Layers is
an Ad-hoc and Unoptimized Process

9

▷ Undertaken by several projects
– OSv, Graphene, HermiTux, Unikraft, Zephyr, 

Fuchsia, Browsix, Kerla, etc.



Building Compatibility Layers is
an Ad-hoc and Unoptimized Process

10

▷ Undertaken by several projects
– Osv, Graphene, HermiTux, Unikraft, Zephyr, 

Fuchsia, Browsix, Kerla, etc.
▷ Application-driven, organic process:

– Take an app, try to run it, it fails, implemente the 
needed OS feature, rince and repeat



Building Compatibility Layers is
an Ad-hoc and Unoptimized Process

11

▷ Undertaken by several projects
– Osv, Graphene, HermiTux, Unikraft, Zephyr, 

Fuchsia, Browsix, Kerla, etc.
▷ Application-driven, organic process:

– Take an app, try to run it, it fails, implemente the 
needed OS feature, rince and repeat

▷ Most of that implementation is OS-specific



Building Compatibility Layers is
an Ad-hoc and Unoptimized Process

12

▷ Undertaken by several projects
– Osv, Graphene, HermiTux, Unikraft, Zephyr, 

Fuchsia, Browsix, Kerla, etc.
▷ Application-driven, organic process:

– Take an app, try to run it, it fails, implemente the 
needed OS feature, rince and repeat

▷ Most of that implementation is OS-specific

▷ How can we optimize it?



13

Static analysis?
Ituitively a good solution because it 
is comprehensive



14

Tsai et al., A Study of Modern Linux API Usage and 
Compatibility: What to Support When You’re 
Supporting, EuroSys’16 Best Paper Award

Static analysis?
Ituitively a good solution because it 
is comprehensive



15

Tsai et al., A Study of Modern Linux API Usage and 
Compatibility: What to Support When You’re 
Supporting, EuroSys’16 Best Paper Award

Static analysis?

But do we need full compatilibity?
Or even 100% stability?

Ituitively a good solution because it 
is comprehensive



16

Dynamic analysis



17

Dynamic analysis

▷ strace is still not a 
panacea



System Call Stubbing/Faking

18



System Call Stubbing/Faking

19



System Call Support Landscape

20



System Call Support Landscape

21

Can we measure that?



22

Loupe



Loupe

23

▷ Super-strace measuring the system calls 
required to run an application, checking
which ones can be faked/stubbed



Loupe

24

▷ Super-strace measuring the system calls 
required to run an application, checking
which ones can be faked/stubbed

▷ Used to build a database of apps measurements



Loupe

25

▷ Super-strace measuring the system calls 
required to run an application, checking
which ones can be faked/stubbed

▷ Used to build a database of apps measurements
▷ Can derive support plans for custom Oses

– For a set of target apps to support and a set of 
already-implemented system calls, what is the 
optimized order of system calls to implement to 
support as many apps as soon as possible



Loupe from the user point of view

Dockerfile:
how to build
and run the
app under

test

Input 
workload 

(shell script)

Loupe



Loupe from the user point of view

Dockerfile:
how to build
and run the
app under

test

Input 
workload 

(shell script)

App running

Linux Kernel

Loupe

sy
sc

al
ls



Loupe from the user point of view

Dockerfile:
how to build
and run the
app under

test

Input 
workload 

(shell script)

App running

Linux Kernel

Loupe

sy
sc

al
ls

Results:
For each syscall s of the 

Linux API, does
the app still works if

s is stubbed/faked/both

LoupeDB



Loupe from the user point of view

29

Dockerfile:
how to build
and run the
app under

test

Input 
workload 

(shell script)

App running

Linux Kernel

Loupe

sy
sc

al
ls

Results:
For each syscall s of the 

Linux API, does
the app still works if

s is stubbed/faked/both

LoupeDB

Support
Plan

OS
Profile



How does it Works?

30

1) Determine all system calls done by the
app processing the workload with a quick
pass of strace



How does it Works?

31

1) Determine all system calls done by the
app processing the workload with a quick
pass of strace

2) For each system call identified, hook into system 
calls invocations with seccomp, emulate
● Stubbing: return -ENOSYS
● Faking: return 0

And check if the app/workload succeeds



How to check for success?

32

Run-to-completion (e.g. fio)
● Run the app instrumented with loupe, then check its exit 

code
● Optionally run a script after each run for additional checks 

(stdout, files created, etc.)

2 types of apps:



How to check for success?

33

Run-to-completion (e.g. fio)
● Run the app instrumented with loupe, then check its exit 

code
● Optionally run a script after each run for additional checks 

(stdout, files created, etc.)

Client/Server (e.g. nginx)
● Run the app and check that it does not crash
● Concurrently run a workload script (e.g. wrk) and check for 

its successful execution too

2 types of apps:



34

Results 
Analysis



What Syscalls to (Really) Implement?

35



What Syscalls to (Really) Implement?

36

- Static analysis highly overestimate the engineering effort for 
supporting an app
- Naive (strace) dynamic analysis also measures much more 
syscalls that what is actually required



What Syscalls to (Really) Implement?

37



What Syscalls to (Really) Implement?

38



Why does Stubbing/Faking Work?

getrlimit@Redis



Why does Stubbing/Faking Work?

Systems calls for which the
return value is commonly
not checked:
● close
● munmap
● sched_yield
● exit
● etc.



Long-Term Support?

41



Examples of Support
Plans

42



43

Demo



Features in Development

▷ Fine-grained measurement
– e.g. mmap’s MAP_ANONYMOUS, IOCTLs
– Virtual filesystems

● /proc
● /dev

44



Conclusion

▷ Building compatibility layers is important for many 
custom Oses
– It is generally seen as a huge effort

▷ Ad-hoc, organic process that could be optimized
▷ Loupe streamline that process by measuring exactly 

what system calls need to be implemented for a 
given app/workload

45


	THIS IS YOUR PRESENTATION TITLE
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Instructions for use
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

