Loupe: Designing Application-driven Compatibility Layers
in Custom Operating Systems

Pierre Olivier, The University of Manchester
pierre.olivier@manchester.ac.uk

Joint work with Hugo Lefeuvre?!, Gaulthier Gain?, Vlad-Andrei Badoiu?®, Daniel Dinca?®, Vlad-Radu

Schiller?, Costin Raiciu®, and Felipe Huici*
The University of Manchester, 2University of Liége, *Politehnica University of Bucharest, “Unikraft.io

.) Wnikraft

The University of Manchester

mailto:pierre.olivier@manchester.ac.uk

Custom Oses & Compatibility

> We still need custom (research/prototype) Oses

Custom Oses & Compatibility

> We still need custom (research/prototype) Oses

> These are only as good/popular as the applications
they can run

Custom Oses & Compatibility

> We still need custom (research/prototype) Oses

> These are only as good/popular as the applications
they can run
> Compatibility with existing applications is key

= To build a community
— To attract potential sponsors/investors
— To gather early numbers

- etc. 4

How is Compatibility Achieved?

> Porting is not sustainable

How is Compatibility Achieved?

> Porting is not sustainable

> Transparent compatibility:
emulate a popular OS e.g. Linux

- Source level
— Binary Libc level

— Binary system call level

Compatibility Seemingly Takes Effort

> Linux has 360+ system calls
> Some are vectored (e.g. ioctl)

> Beyond system call: virtual filesystems
(/proc, etc.)

> Hinders the development
of custom Oses

Compatibility Seemingly Takes Effort

> Linux has 360+ system calls
> Some are vectored (e.g. ioctl)

> Beyond system call: virtual filesystems
(/proc, etc.)

> Hinders the development
of custom Oses

ecuri

1000+ papers in
SOSP/OSDI/ASPLOS/EuroSys
over the last 10Y 3

Building Compatibility Layers is
an Ad-hoc and Unoptimized Process
> Undertaken by several projects

— OSy, Graphene, HermiTux, Unikraft, Zephyr,
Fuchsia, Browsix, Kerla, etc.

Building Compatibility Layers is
an Ad-hoc and Unoptimized Process
> Undertaken by several projects

— Osv, Graphene, HermiTux, Unikraft, Zephyr,
Fuchsia, Browsix, Kerla, etc.

> Application-driven, organic process:

— Take an app, try to run it, it fails, implemente the
needed OS feature, rince and repeat

10

Building Compatibility Layers is
an Ad-hoc and Unoptimized Process
> Undertaken by several projects

— Osv, Graphene, HermiTux, Unikraft, Zephyr,
Fuchsia, Browsix, Kerla, etc.

> Application-driven, organic process:

— Take an app, try to run it, it fails, implemente the
needed OS feature, rince and repeat

> Most of that implementation is OS-specific

11

Building Compatibility Layers is
an Ad-hoc and Unoptimized Process
> Undertaken by several projects

— Osv, Graphene, HermiTux, Unikraft, Zephyr,
Fuchsia, Browsix, Kerla, etc.

> Application-driven, organic process:

— Take an app, try to run it, it fails, implemente the
needed OS feature, rince and repeat

> Most of that implementation is OS-specific

> How can we optimize it? .

Static analysis?

ltuitively a good solution because it
is comprehensive

13

Static analysis?

ltuitively a good solution because it
is comprehensive

This paper yields several insights for developers and re-
searchers, which are useful for assessing the complexity and
security of Linux APIs. For example, every Ubuntu instal-
lation requires 224 system calls, 208 ioctl, fcentl, and
prctl codes and hundreds of pseudo files. For each API

Tsai et al., A Study of Modern Linux APl Usage and
Compatibility: What to Support When You're
Supporting, EuroSys’16 Best Paper Award

14

Static analysis?

ltuitively a good solution because it
is comprehensive

This paper yields several insights for developers and re-
searchers, which are useful for assessing the complexity and
security of Linux APIs. For example, every Ubuntu instal-
lation requires 224 system calls, 208 ioctl, fcentl, and
prctl codes and hundreds of pseudo files. For each API

Tsai et al., A Study of Modern Linux APl Usage and
Compatibility: What to Support When You're
Supporting, EuroSys’16 Best Paper Award

But do we need full compatilibity?
Or even 100% stability?

15

Dynamic analysis

strace(1) — Linux manual page

NAME | SYNOPSIS | DESCRIPTION | OPTIONS | DIAGNOSTICS | SETUID INSTALLATION |
MULTIPLE PERSONALITIES SUPPORT | NOTES | BUGS | HISTORY | REPORTING BUGS |
SEE ALSO |AUTHORS | COLOPHON

| || search online pages |

STRACE(1) General Commands Manual STRACE(1)

NAME top

strace - trace system calls and signals

SYNOPSIS top
strace [-ACdffhikqgqrtttTvVwxxyyzZ] [-I n] [-b execve]

[-e expr]... [-0 overhead] [-S sortby] [-U columns]
[-a column] [-o0 file] [-s strsize] [-X format]
[-P path]... [-p pid]... [--seccomp-bpf]

[-—secontext[format]] { -p pid | [-DDD] [-E var[=vall]...

nm e Aarnamal cammand Taeraes1 1

16

Dynamic analysis

strace(1) — Linux manual page

NAME | SYNOPSIS | DESCRIPTION | OPTIONS | DIAGNOSTICS | SETUID INSTALLATION |
MULTIPLE PERSONALITIES SUPPORT | NOTES | BUGS | HISTORY | REPORTING BUGS |
SEE ALSO |AUTHORS | COLOPHON

| || search online pages |

STRACE(1) General Commands Manual STRACE(1)

NAME top

strace - trace system calls and signals

SYNOPSIS top
strace [-ACdffhikqgqrtttTvVwxxyyzZ] [-I n] [-b execve]

[-e expr]... [-0 overhead] [-S sortby] [-U columns]
[-a column] [-o0 file] [-s strsize] [-X format]
[-P path]... [-p pid]... [--seccomp-bpf]

[-—secontext[format]] { -p pid | [-DDD] [-E var[=vall]...

nm e Aarnamal cammand Taeraes1 1

> strace is still not a
panacea

17

7 lines (6 sloc) 157 Bytes

#include <hermit/syscall.h>
#include <hermit/stddef.h>

int sys_mincore(unsigned long start, size_ t len, unsigned char *vec) {

1

2

3

4 /* TODO */
=]

6 return -ENOSYS;
E

System Call Stubbing/Faking

7 lines (6 sloc) 157 Bytes

bt A => T & 1 BT Y 4 B A B

#include <hermit/syscall.h>
#include <hermit/stddef.h>

/* TODO */
int sys_mincore(unsigned long start,
return -ENOSYS;

Fake i
Tl you make it

size_t len, unsigned char *vec) {

7 lines (6 sloc) 161 Bytes

1
2
3
4
5
6
7

#include <hermit/syscall.h>
#include <hermit/logging.h>

int sys_chdir(const char *path) {

LOG_WARNING("chdir not implemented, faking success\n");

return ©;

19

Linux
syscall
API

Static
binary
analysis

Static
source
analysis

Dynamic

Can be
stubbed/faked

analysis

Support actually
required

Linux ["static Static
syscall binary | cource

A analysis| 3nalysis Can be Support actually
stubbed/faked required 4

Dynamic|analysis

Can we measure that?

Loupe

> Super-strace measuring the system calls '\.',/,,
required to run an application, checking /
which ones can be faked/stubbed

23

Loupe

> Super-strace measuring the system calls _
required to run an application, checking /
which ones can be faked/stubbed

> Used to build a database of apps measurements

24

Loupe

> Super-strace measuring the system calls _'
required to run an application, checking /
which ones can be faked/stubbed

> Used to build a database of apps measurements
> Can derive support plans for custom Oses

— For a set of target apps to support and a set of
already-implemented system calls, what is the
optimized order of system calls to implement to

support as many apps as soon as possible
25

Loupe from the user point of view

Loupe from the user point of view

/Dockerﬁle:

Results:
For each syscall s of the
Linux API, does
the app still works if
s is stubbed/faked/both

how to build App running
and run the
app under
test 1
Loupe O
4 %)
Input / A 4
workload :
Linux Kernel

(shell script)

—=
LoupeDB w

/Dockerﬁle:
how to build App running Results:

and rundthe For each syscall s of the
app unaer Linux API, does
test . the app still works if Supﬁapr?rt
Loupe & —»| s is stubbed/faked/both
yd / &
Input Y —— T
workload . 5
(shell script) Linux Kernel " 0S

Profile

-
LoupeDB w

How does it Works? =

1) Determine all system calls done by the
app processing the workload with a qwck /
pass of strace

30

How does it Works?

1) Determine all system calls done by the
o
app processing the workload with a qwck /
pass of strace

2) For each system call identified, hook into system
calls invocations with seccomp, emulate

* Stubbing: return -ENOSYS
* Faking: return 0

And check if the app/workload succeeds

31

How to check for success?
2 types of apps: -

Run-to-completion (e.g. fi0)

* Run the app instrumented with loupe, then check its exit
code

* Optionally run a script after each run for additional checks
(stdout, files created, etc.)

32

How to check for success?
2 types of apps:

Run-to-completion (e.g. fi0)

* Run the app instrumented with loupe, then check its exit
code

* Optionally run a script after each run for additional checks
(stdout, files created, etc.)

Client/Server (e.g. nginx)
* Run the app and check that it does not crash

* Concurrently run a workload script (e.g. wrk) and check for
its successful execution too 33

What Syscalls to (ReaIIy) Implement?

100 W @B R R

- M Wi W Mos W06e Wss o

S Uy Sl'.a'j(i b@n I a U,r; '5@;-; Sy QY U,r‘f b@n Sy 9 SU;; ‘é’@_z;, Sy 9 S-if;; ‘f"@_z;, Sy S SU;; b@n Sy qY SU;; b@nch

Redis Nginx Memcached SQLite HAProxy Lighttpd weborf

Stat source [] Stat binary 1 Dyn required Dyn stubbed [Dyn faked] Dynany [1

35

What Syscalls to (ReaIIy) Implement?

100 W @B R R

- M Wi W Mos W06e Wss o

S Uy Sl‘.a'j(# b@n I a b‘,r; '5@;-; Sy QY U,r‘f '56';; Sy 9 SU;; ‘é’@n Sy 9 Sl'Jj!f ‘f"@n Sy S Sb‘;f b@n Sy qY Sb‘,r; b@,-;ch

Redis Nginx Memcached SQLite HAProxy Lighttpd weborf

Stat source [] Stat binary 1 Dyn required Dyn stubbed [Dyn faked] Dynany [1

- Static analysis highly overestimate the engineering effort for
supporting an app

- Naive (strace) dynamic analysis also measures much more
syscalls that what is actually required

36

What Syscalls to (Really) Implement?

100
25 :
] 49 |50 51 (52 : 61 62] 80
72 77 89 90 [il)
96 97
60
144 145 146 147
40
221222223
265 20
291 292 [#88 294 295 296
0

(a) Static analysis, binary.

37

21 |72 100 45|67 8 9|30 7 20 21 22 49
45 46 47 28 3 . 1] 14243 4 47
80 54 55 7 € 80
77 79 80 BN
102 (1 104 105 106/107 108 floJal}
60 131132 141 60
144 145 146 147
191
40 208 204 40
221222223 234 88|
254 255 263
20 265 BE BE 272 280 283 B84 285 286 20
291 292 [#88 294 295 296 201 298294 295 296 302 308
316 326
0 0
(b) Static analysis, source.
100 3 s 17 18 |20 21 o
= % B 45 a4 45 %6
g0 8 52 53 [l A EEl 60 61 63 80
£ 83 87
2 102 104 107 108
60 = 60
@
]
w0 2 213 40
==
-
20 [20
[}
g 302
o < 0
(c) Dynamic analysis, executed. (d) Dynamic analysis, required.

Apps requiring the system call [%)]

Apps requiring the system call [%]

Why does Stubbing/Faking Work?

if (getrlimit(RLIMIT_NOFILE ,&limit) == -1) {
serverlLog
(LL_WARNING, "Unable to obtain the current NOFILE"
"limit

(%s), assuming 1024 and setting the max clients"
"configuration accordingly.", strerror(errno));
server.maxclients = 1024-CONFIG_MIN_RESERVED_FDS;

}
getrlimit@Redis

Systems calls for which the
return value is commonly

not checked:

close
munmap
sched yield
exit

etc.

100

9
@
el
o
(]
=
2
v
& 60
w
£ : 157}
S IR
g 179 186 191
: 2
S
o~ pn EHE — EDEEENES
~ 255
5 2E T EY-1= CYT:
= £ _ £D2 B 20
%] 280
g 296
< 312

321 0

-0

Figure 8. Apps checking system calls return values.

Long-Term Support?

D

B B0

= ' ' '

@ 50 F 1o

a0 [] e o] :

e i I I R A o B

2 20 . : . : |

o HEHE 56

. 0 : . . S

= 10 21 ‘06 21 ‘06 21

Redis Nginx httpd (Apache)

Dynamic required 2] Dynamic faked [
Dynamic stubbed [Dynamic any []

Figure 9. System call usage and capacity to be stubbed/faked
for recent (2021) and older (2005-2010) applications releases.

| Step | Implement

| Stub

| Fake

Apps supported |

Unikraft (commit 7d67@7f. supports 174 syscalls)
0 |- - - (12 apps)
1 290 273, 218, 230 - + Memcached
2 218 - - + H20
3 283, 27 186 - + MongoDB

Fuchsia (commit 5d2@758, supports 152 syscalls)
0 - - - (11 apps)
1 - g9, 222,223 - + HAProxy
2 302 2713, 230, 105 - + Memcached
3 33 - - + Lighttpd
1 128, 99, 27 - - + MongoDB

Kerla (commit 7331873, supports 58 syscalls)
0 - - - (4 apps)
1 56, 257, 54 (17 system calls) 47 + Httpd
2 10 - - + Weborf
3 232, 233, 302 (9 system calls) 213 | + HAProxy
4 17,18, 533 96, 40, 201, 105, | 290 + Nginx
106, 116
3 213, 262 93 - + Redis
6 | 291 293 - + Lighttpd
7 | 288,290 32, 87 - + H20
B 46 230 - + Memcached
9 B, 21, BY B 25 + 5QLite
10 104, 107, 108, 102 | - - + Webfsd
11 128,99 229 27,73, | 131 137 +f\'[0ng0DE
202, 283

Features in Development

> Fine-grained measurement
- e.g. mmap’'s MAP_ANONYMOUS, IOCTLs
= Virtual filesystems
* /proc
* /dev

44

Conclusion

> Building compatibility layers is important for many
custom Oses
— It is generally seen as a huge effort

> Ad-hoc, organic process that could be optimized

> Loupe streamline that process by measuring exactly
what system calls need to be implemented for a
given app/workload

45

	THIS IS YOUR PRESENTATION TITLE
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Instructions for use
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

