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Custom Oses & Compatibility

> We still need custom (research/prototype) Oses

> These are only as good/popular as the applications
they can run
> Compatibility with existing applications is key

= To build a community
— To attract potential sponsors/investors
— To gather early numbers

- etc. 4
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How is Compatibility Achieved?

> Porting is not sustainable

> Transparent compatibility:
emulate a popular OS e.g. Linux

- Source level
— Binary Libc level

— Binary system call level



Compatibility Seemingly Takes Effort

> Linux has 360+ system calls
> Some are vectored (e.g. ioctl)

> Beyond system call: virtual filesystems
(/proc, etc.)

> Hinders the development
of custom Oses




Compatibility Seemingly Takes Effort

> Linux has 360+ system calls
> Some are vectored (e.g. ioctl)

> Beyond system call: virtual filesystems
(/proc, etc.)

> Hinders the development
of custom Oses

ecuri

1000+ papers in
SOSP/OSDI/ASPLOS/EuroSys
over the last 10Y 3
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Building Compatibility Layers is
an Ad-hoc and Unoptimized Process
> Undertaken by several projects

— Osv, Graphene, HermiTux, Unikraft, Zephyr,
Fuchsia, Browsix, Kerla, etc.

> Application-driven, organic process:

— Take an app, try to run it, it fails, implemente the
needed OS feature, rince and repeat

> Most of that implementation is OS-specific

> How can we optimize it? .
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ltuitively a good solution because it
is comprehensive
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Static analysis?

ltuitively a good solution because it
is comprehensive

This paper yields several insights for developers and re-
searchers, which are useful for assessing the complexity and
security of Linux APIs. For example, every Ubuntu instal-
lation requires 224 system calls, 208 ioctl, fcentl, and
prctl codes and hundreds of pseudo files. For each API

Tsai et al., A Study of Modern Linux APl Usage and
Compatibility: What to Support When You're
Supporting, EuroSys’16 Best Paper Award
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Static analysis?

ltuitively a good solution because it
is comprehensive

This paper yields several insights for developers and re-
searchers, which are useful for assessing the complexity and
security of Linux APIs. For example, every Ubuntu instal-
lation requires 224 system calls, 208 ioctl, fcentl, and
prctl codes and hundreds of pseudo files. For each API

Tsai et al., A Study of Modern Linux APl Usage and
Compatibility: What to Support When You're
Supporting, EuroSys’16 Best Paper Award

But do we need full compatilibity?
Or even 100% stability?
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Dynamic analysis

strace(1) — Linux manual page

NAME | SYNOPSIS | DESCRIPTION | OPTIONS | DIAGNOSTICS | SETUID INSTALLATION |
MULTIPLE PERSONALITIES SUPPORT | NOTES | BUGS | HISTORY | REPORTING BUGS |
SEE ALSO |AUTHORS | COLOPHON

| || search online pages |

STRACE(1) General Commands Manual STRACE(1)

NAME top

strace - trace system calls and signals

SYNOPSIS top
strace [-ACdffhikqgqrtttTvVwxxyyzZ] [-I n] [-b execve]

[-e expr]... [-0 overhead] [-S sortby] [-U columns]
[-a column] [-o0 file] [-s strsize] [-X format]
[-P path]... [-p pid]... [--seccomp-bpf]

[-—secontext[ format] ] { -p pid | [-DDD] [-E var[=vall]...

nm e Aarnamal cammand Taeraes1 1
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Dynamic analysis

strace(1) — Linux manual page

NAME | SYNOPSIS | DESCRIPTION | OPTIONS | DIAGNOSTICS | SETUID INSTALLATION |
MULTIPLE PERSONALITIES SUPPORT | NOTES | BUGS | HISTORY | REPORTING BUGS |
SEE ALSO |AUTHORS | COLOPHON

| || search online pages |

STRACE(1) General Commands Manual STRACE(1)

NAME top

strace - trace system calls and signals

SYNOPSIS top
strace [-ACdffhikqgqrtttTvVwxxyyzZ] [-I n] [-b execve]

[-e expr]... [-0 overhead] [-S sortby] [-U columns]
[-a column] [-o0 file] [-s strsize] [-X format]
[-P path]... [-p pid]... [--seccomp-bpf]

[-—secontext[ format] ] { -p pid | [-DDD] [-E var[=vall]...

nm e Aarnamal cammand Taeraes1 1

> strace is still not a
panacea
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7 lines (6 sloc) 157 Bytes

#include <hermit/syscall.h>
#include <hermit/stddef.h>

int sys_mincore(unsigned long start, size_ t len, unsigned char *vec) {

1

2

3

4 /* TODO */
=]

6 return -ENOSYS;
E




System Call Stubbing/Faking

7 lines (6 sloc) 157 Bytes

bt A => T & 1 BT Y 4 B A B

#include <hermit/syscall.h>
#include <hermit/stddef.h>

/* TODO */
int sys_mincore(unsigned long start,
return -ENOSYS;

Fake i
Tl you make it

size_t len, unsigned char *vec) {

7 lines (6 sloc) 161 Bytes

1
2
3
4
5
6
7

#include <hermit/syscall.h>
#include <hermit/logging.h>

int sys_chdir(const char *path) {

LOG_WARNING("chdir not implemented, faking success\n");

return ©;

19



Linux
syscall
API

Static
binary
analysis

Static
source
analysis

Dynamic

Can be
stubbed/faked

analysis

Support actually
required




Linux ["static Static
syscall binary | cource

A analysis| 3nalysis Can be Support actually
stubbed/faked required 4

Dynamic|analysis

Can we measure that?







Loupe

> Super-strace measuring the system calls '\.',/,,
required to run an application, checking /
which ones can be faked/stubbed
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Loupe

> Super-strace measuring the system calls _'
required to run an application, checking /
which ones can be faked/stubbed

> Used to build a database of apps measurements
> Can derive support plans for custom Oses

— For a set of target apps to support and a set of
already-implemented system calls, what is the
optimized order of system calls to implement to

support as many apps as soon as possible
25



Loupe from the user point of view
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/Dockerﬁle:

Results:
For each syscall s of the
Linux API, does
the app still works if
s is stubbed/faked/both

how to build App running
and run the
app under
test 1
Loupe O
4 %)
Input / A 4
workload :
Linux Kernel

(shell script)

—=
LoupeDB w




/Dockerﬁle:
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and rundthe For each syscall s of the
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Loupe & —»| s is stubbed/faked/both
yd / &
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workload . 5
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How does it Works? =

1) Determine all system calls done by the
app processing the workload with a qwck /
pass of strace

30



How does it Works?

1) Determine all system calls done by the
o
app processing the workload with a qwck /
pass of strace

2) For each system call identified, hook into system
calls invocations with seccomp, emulate

* Stubbing: return -ENOSYS
* Faking: return 0

And check if the app/workload succeeds

31



How to check for success?
2 types of apps: -

Run-to-completion (e.g. fi0)

* Run the app instrumented with loupe, then check its exit
code

* Optionally run a script after each run for additional checks
(stdout, files created, etc.)
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How to check for success?
2 types of apps:

Run-to-completion (e.g. fi0)

* Run the app instrumented with loupe, then check its exit
code

* Optionally run a script after each run for additional checks
(stdout, files created, etc.)

Client/Server (e.g. nginx)
* Run the app and check that it does not crash

* Concurrently run a workload script (e.g. wrk) and check for
its successful execution too 33






What Syscalls to (ReaIIy) Implement?

100 W @B R R

- M Wi W Mos W06e Wss o

S Uy Sl'.a'j(i b@n I a U,r; '5@;-; Sy QY U,r‘f b@n Sy 9 SU;; ‘é’@_z;, Sy 9 S-if;; ‘f"@_z;, Sy S SU;; b@n Sy qY SU;; b@nch

Redis Nginx Memcached SQLite HAProxy Lighttpd weborf

Stat source [] Stat binary 1 Dyn required Dyn stubbed [ Dyn faked ] Dynany [1
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What Syscalls to (ReaIIy) Implement?

100 W @B R R

- M Wi W Mos W06e Wss o

S Uy Sl‘.a'j(# b@n I a b‘,r; '5@;-; Sy QY U,r‘f '56';; Sy 9 SU;; ‘é’@n Sy 9 Sl'Jj!f ‘f"@n Sy S Sb‘;f b@n Sy qY Sb‘,r; b@,-;ch

Redis Nginx Memcached SQLite HAProxy Lighttpd weborf

Stat source [] Stat binary 1 Dyn required Dyn stubbed [ Dyn faked ] Dynany [1

- Static analysis highly overestimate the engineering effort for
supporting an app

- Naive (strace) dynamic analysis also measures much more
syscalls that what is actually required
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What Syscalls to (Really) Implement?

100
25 :
] 49 |50 51 (52 : 61 62 ] 80
72 77 89 90 [il)
96 97
60
144 145 146 147
40
221222223
265 20
291 292 [#88 294 295 296
0

(a) Static analysis, binary.
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(b) Static analysis, source.
100 3 s 17 18 |20 21 o
= % B 45 a4 45 %6
g0 8 52 53 [l A EEl 60 61 63 80
£ 83 87
2 102 104 107 108
60 = 60
@
]
w0 2 213 40
==
-
20 [ 20
[}
g 302
o < 0
(c) Dynamic analysis, executed. (d) Dynamic analysis, required.

Apps requiring the system call [%)]

Apps requiring the system call [%]



Why does Stubbing/Faking Work?

if (getrlimit(RLIMIT_NOFILE ,&limit) == -1) {
serverlLog
(LL_WARNING, "Unable to obtain the current NOFILE"
"limit

(%s), assuming 1024 and setting the max clients"
"configuration accordingly.", strerror(errno));
server.maxclients = 1024-CONFIG_MIN_RESERVED_FDS;

}
getrlimit@Redis




Systems calls for which the
return value is commonly

not checked:

close
munmap
sched yield
exit

etc.
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Figure 8. Apps checking system calls return values.



Long-Term Support?
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Figure 9. System call usage and capacity to be stubbed/faked
for recent (2021) and older (2005-2010) applications releases.



| Step | Implement

| Stub

| Fake

Apps supported |

Unikraft (commit 7d67@7f. supports 174 syscalls)
0 |- - - (12 apps)
1 290 273, 218, 230 - + Memcached
2 218 - - + H20
3 283, 27 186 - + MongoDB

Fuchsia (commit 5d2@758, supports 152 syscalls)
0 - - - (11 apps)
1 - g9, 222,223 - + HAProxy
2 302 2713, 230, 105 - + Memcached
3 33 - - + Lighttpd
1 128, 99, 27 - - + MongoDB

Kerla (commit 7331873, supports 58 syscalls)
0 - - - (4 apps)
1 56, 257, 54 (17 system calls) 47 + Httpd
2 10 - - + Weborf
3 232, 233, 302 (9 system calls) 213 | + HAProxy
4 17,18, 533 96, 40, 201, 105, | 290 + Nginx
106, 116
3 213, 262 93 - + Redis
6 | 291 293 - + Lighttpd
7 | 288,290 32, 87 - + H20
B 46 230 - + Memcached
9 B, 21, BY B 25 + 5QLite
10 104, 107, 108, 102 | - - + Webfsd
11 128,99 229 27,73, | 131 137 +f\'[0ng0DE
202, 283







Features in Development

> Fine-grained measurement
- e.g. mmap’'s MAP_ANONYMOUS, IOCTLs
= Virtual filesystems
* /proc
* /dev

44



Conclusion

> Building compatibility layers is important for many
custom Oses
— It is generally seen as a huge effort

> Ad-hoc, organic process that could be optimized

> Loupe streamline that process by measuring exactly
what system calls need to be implemented for a
given app/workload

45
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