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Custom Oses & Compatibility

▷ We still need custom (research/prototype) Oses
▷ These are only as good/popular as the applications 

they can run
▷ Compatibility with existing applications is key

– To build a community
– To attract potential sponsors/investors
– To gather early numbers
– etc. 4
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How is Compatibility Achieved?

▷ Porting is not sustainable
▷ Transparent compatibility:

emulate a popular OS e.g. Linux
– Source level
– Binary Libc level
– Binary system call level
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1000+ papers in 
SOSP/OSDI/ASPLOS/EuroSys 
over the last 10Y

▷ Linux has 360+ system calls
▷ Some are vectored (e.g. ioctl)
▷ Beyond system call: virtual filesystems

(/proc, etc.)
▷ Hinders the development

of custom Oses
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Building Compatibility Layers is
an Ad-hoc and Unoptimized Process
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▷ Undertaken by several projects
– Osv, Graphene, HermiTux, Unikraft, Zephyr, 

Fuchsia, Browsix, Kerla, etc.
▷ Application-driven, organic process:

– Take an app, try to run it, it fails, implemente the 
needed OS feature, rince and repeat

▷ Most of that implementation is OS-specific

▷ How can we optimize it?
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Static analysis?
Ituitively a good solution because it 
is comprehensive
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Tsai et al., A Study of Modern Linux API Usage and 
Compatibility: What to Support When You’re 
Supporting, EuroSys’16 Best Paper Award
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is comprehensive
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Tsai et al., A Study of Modern Linux API Usage and 
Compatibility: What to Support When You’re 
Supporting, EuroSys’16 Best Paper Award

Static analysis?

But do we need full compatilibity?
Or even 100% stability?

Ituitively a good solution because it 
is comprehensive
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Dynamic analysis
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Dynamic analysis

▷ strace is still not a 
panacea
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System Call Support Landscape
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System Call Support Landscape
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Can we measure that?
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Loupe
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▷ Super-strace measuring the system calls 
required to run an application, checking
which ones can be faked/stubbed
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▷ Super-strace measuring the system calls 
required to run an application, checking
which ones can be faked/stubbed

▷ Used to build a database of apps measurements
▷ Can derive support plans for custom Oses

– For a set of target apps to support and a set of 
already-implemented system calls, what is the 
optimized order of system calls to implement to 
support as many apps as soon as possible
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Dockerfile:
how to build
and run the
app under

test

Input 
workload 

(shell script)

App running

Linux Kernel

Loupe

sy
sc

al
ls

Results:
For each syscall s of the 

Linux API, does
the app still works if

s is stubbed/faked/both

LoupeDB

Support
Plan

OS
Profile
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1) Determine all system calls done by the
app processing the workload with a quick
pass of strace

2) For each system call identified, hook into system 
calls invocations with seccomp, emulate
● Stubbing: return -ENOSYS
● Faking: return 0

And check if the app/workload succeeds



How to check for success?
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Run-to-completion (e.g. fio)
● Run the app instrumented with loupe, then check its exit 

code
● Optionally run a script after each run for additional checks 

(stdout, files created, etc.)

2 types of apps:
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Run-to-completion (e.g. fio)
● Run the app instrumented with loupe, then check its exit 

code
● Optionally run a script after each run for additional checks 

(stdout, files created, etc.)

Client/Server (e.g. nginx)
● Run the app and check that it does not crash
● Concurrently run a workload script (e.g. wrk) and check for 

its successful execution too

2 types of apps:
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Results 
Analysis
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What Syscalls to (Really) Implement?
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- Static analysis highly overestimate the engineering effort for 
supporting an app
- Naive (strace) dynamic analysis also measures much more 
syscalls that what is actually required



What Syscalls to (Really) Implement?
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What Syscalls to (Really) Implement?
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Why does Stubbing/Faking Work?

getrlimit@Redis



Why does Stubbing/Faking Work?

Systems calls for which the
return value is commonly
not checked:
● close
● munmap
● sched_yield
● exit
● etc.



Long-Term Support?
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Examples of Support
Plans
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Demo



Features in Development

▷ Fine-grained measurement
– e.g. mmap’s MAP_ANONYMOUS, IOCTLs
– Virtual filesystems

● /proc
● /dev
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Conclusion

▷ Building compatibility layers is important for many 
custom Oses
– It is generally seen as a huge effort

▷ Ad-hoc, organic process that could be optimized
▷ Loupe streamline that process by measuring exactly 

what system calls need to be implemented for a 
given app/workload

45
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