
Case study: developing an
analysis and instrumentation
tool based on LLVM:
PARCOACH
LLVM @ FOSDEM 2023 - February 4th

Philippe Virouleau

2 -Case study of an out of tree LLVM tool- P. Virouleau

01.. Introduction and context
02.. Keeping up with LLVM

Out-of-tree management
Developing code
Versions
Passes

03.. Usability
As a developer
As a user

04.. Dealing with packaging
05.. Conclusion

Outline

3 -Case study of an out of tree LLVM tool- P. Virouleau

Introduction and context
01

About this talk

Why?
• Provide a feedback, lay down what I wish I knew before
• Encountered similar issues in various out-of-tree projects
• The talk is not so much about the tools themselves but rather

about the approach.

For whom?
Anyone (about to be) involved in an out-of-tree LLVM tool/plugin.

Disclaimer: this is my own take on this topic, if you have alternatives or
better ways of dealing with what I will describe, please do let me know :)

4 -Case study of an out of tree LLVM tool- P. Virouleau

Main motivating project

PARCOACH1

Analysis and instrumentation tool for HPC.
Detects incorrect usage of OpenMP/MPI’s APIs (data race,
deadlock, ...).

• Devs: Interns, PhD students, researchers
• Users: scientific applications devs, students
• Started with LLVM 3.7, now LLVM 15
• No dedicated LLVM engineer until recently

1: https://gitlab.inria.fr/parcoach/parcoach

5 -Case study of an out of tree LLVM tool- P. Virouleau

https://gitlab.inria.fr/parcoach/parcoach

Other motivating projects

Commercial compiler
Commercial LLVM based obfuscator.

• Devs: LLVM/C++ engineers
• Users: clients

Student LLVM exercises2

Introduction to code transformation with LLVM (15)
• Devs: Juan, me
• Users: students

2: https://github.com/viroulep/master-csi-public

6 -Case study of an out of tree LLVM tool- P. Virouleau

https://github.com/viroulep/master-csi-public

7 -Case study of an out of tree LLVM tool- P. Virouleau

Keeping up with LLVM
02

Integration with CMake

Naive/manual approaches
Either forced:

• With LLVM < 3.5: manual compilation, using llvm-config

• Manual add_library + target_link_libraries

Or based on user’s experience
• ”CMake integration” but with hardcoded values

Using CMake integration
Simplifies build options:

• What lib for which components?
• What if I want to link dynamically? Statically?

Dedicated macros: add_llvm_library, add_llvm_pass_plugin,
add_llvm_tool

8 -Case study of an out of tree LLVM tool- P. Virouleau

CMake - example code

1 # User can pass -DLLVM_DIR to help CMake

2 find_package(LLVM 15 REQUIRED CONFIG)

3 list(APPEND CMAKE_MODULE_PATH "${ LLVM_CMAKE_DIR }")
4 include(AddLLVM)

5 # Make the LLVM definitions globally available.

6 add_definitions(${LLVM_DEFINITIONS })
7 include_directories(${LLVM_INCLUDE_DIRS })
8
9 set(LLVM_LINK_COMPONENTS Core Support Passes ...)

10 # Or STATIC

11 add_llvm_library(mylib LibSource.cpp SHARED)

12
13 # Maybe pass DISABLE_LLVM_LINK_LLVM_DYLIB

14 add_llvm_tool(mytool Source.cpp)

15 target_link_libraries(mytool mylib)

16
17 # ... Somewhere else (or unset ${LLVM_LINK_COMPONENTS })
18 add_llvm_pass_plugin(myplugin PluginSource.cpp)

LLVM’s cmake sets libs and targets based on the build you want.
(more on this in the packaging section)

Useful examples: llvm/examples/Bye, llvm-tutor

9 -Case study of an out of tree LLVM tool- P. Virouleau

C++/LLVM idioms - Exploring the IR

Familiarity with C++/LLVM
• (New) contributors may not be comfortable
• Code taken from ”old” snippets

Often seen idioms:
for (auto ItBB = F.begin();

ItBB != F.end(); ++ItBB) {

for (auto It = BB->begin();

It != BB ->end(); ++It) {

Instruction &I = *It;

// ...

}

}

Alternatives:
for (auto &BB : F) {

for (auto &I : BB) {

// ...

}

}

for (auto &I : instructions(F)) {

// ...

}

10 -Case study of an out of tree LLVM tool- P. Virouleau

C++/LLVM idioms - Exploring the IR

Familiarity with C++/LLVM
• (New) contributors may not be comfortable
• Code taken from ”old” snippets

for (auto &I : instructions(F)) {

if (!isa <CallInst >(I)) {

continue;

}

CallInst &CI = cast <CallInst >(I);

// ...

}

for (auto &I : instructions(F)) {

if (CallInst *CI =

dyn_cast <CallInst >(&I)) {

// ...

}

}

auto IsCI = [](Instruction &I) {

return isa <CallInst >(I);

};

for (auto &I : make_filter_range(

instructions(F), IsCI)) {

CallInst &CI = cast <CallInst >(I);

// ...

}

10 -Case study of an out of tree LLVM tool- P. Virouleau

Advanced Data Types, STL Extras
First approach is to use ”known” data types:
void foo(std::map <Instruction *, int > &Input , int X) {

bar(Input); // Do something with Input

auto Found = std:: find_if(Input.begin (), Input.end(),

[](auto const &Entry) { return Entry.second == X; });

if (Found != Input.end()) {

Instruction *I = Found ->first;

int Val = Found ->second;

// Do something with I and Val.

}

}

What if the Value is modified (deleted, RAUW-ed)?
void foo(ValueMap <Instruction *, int > &Input , int X) {

bar(Input); // Do something with Input

auto Found = llvm:: find_if(Input ,

[](auto const &Entry) { return Entry.second == X; });

if (Found != Input.end()) {

auto [I, Val] = *FoundI;

// Do something with I and Val.

}

}

Same goes for *Vector, ArrayRef, StringRef, and all of
STLExtras...

11 -Case study of an out of tree LLVM tool- P. Virouleau

Dealing with it

Is it being picky?
• Depends on who is contributing
• Accumulation of small details matters
• Makes code more readable (= easier for new contributors)

Some ideas
• Code reviews (obvious in some context, hard to do in others).

(eg: research in areas where compilers are ”just” a tool).
• Read LLVM programmers manual.
• Read the code.

12 -Case study of an out of tree LLVM tool- P. Virouleau

Upgrading the LLVM version

Common considerations
• API breaking.
• IR changes (eg: opaque pointers).
• May be time consuming (eg: PM migration).
• Dealing with deprecated elements.

Skipping versions makes it worse.

Supporting multiple LLVM versions
eg: any LLVM from 9 to 12.
Don’t do it

13 -Case study of an out of tree LLVM tool- P. Virouleau

Analysis / transformation split

Reminder: passes types
• Analysis (no IR change, cached, can be invalidated).
• Transformation (may change IR, can invalidate analyses).

Analyzing in transformations
Seen a lot of ”all in one” passes, motivation for untangling them:

• Semantically different.
• Benefit from the caching system.
• Avoids passing structures around.

Obviously ease the PM migration.

14 -Case study of an out of tree LLVM tool- P. Virouleau

Investigating performance issues

Manual approach
• Manage timers (in different ways).
• Extra steps to get meaningful representations.
• Commented llvm::errs() everywhere.

LLVM structures
Timers through TimeTraceScope:

• One-line to create a named scoped timer
• Get a flame-graph as a bonus

Debug system:
#define DEBUG_TYPE "mypass"

LLVM_DEBUG(dbgs() << "Some debug string");

Combined with opt -debug-only="mypass".

15 -Case study of an out of tree LLVM tool- P. Virouleau

Flamegraph example

Json imported in speedscope:

16 -Case study of an out of tree LLVM tool- P. Virouleau

Conclusion on tool development

Make your life easy
• Invest in maintainance (if possible).
• Get inspiration from LLVM sources.
• Don’t reinvent the wheel.

Code review is a great way to achieve that.

Keep the diff minimal
Upstream/use upstreamed passes.
Custom analyses is one of the main weaknesses of the project.

17 -Case study of an out of tree LLVM tool- P. Virouleau

18 -Case study of an out of tree LLVM tool- P. Virouleau

Usability
03

As a developer

Make it easy to get started
• Make it clear what LLVM versions and features are needed.

(lib/tools/utils)
• Good feedback from using docker (and clear CI).

(it ”just works”, can code on the host)
• Assume not everyone knows LLVM (PhD students, interns).

Benefit from LLVM tooling
• Lit and FileCheck are great (need a release with tools/utils)
• Out-of-tree plugin/tool: makes sense to follow LLVM coding

standards
(base style for clang-format/clang-tidy)

19 -Case study of an out of tree LLVM tool- P. Virouleau

As a user - Is it user-friendly?

Getting the tool
• Compile from source
• Figure out LLVM installation on their own

(or compile it from source)

Usage
• Get IR (clang/flang -emit-llvm)
• opt -load-pass-plugin=lib.so -passes=somename

Is it nice enough? (for researchers, students)
Verification tool: running on each file is tedious, we need
integration with autotools/cmake.

• Wrapper looking like ”parcoach clang -c a.c -o a.o”
• Generate original object + generate tmp IR + run the tool

20 -Case study of an out of tree LLVM tool- P. Virouleau

As a user - Ready to use solution

Docker
• Provide a (controlled) ideal setup
• Docker-compose to ease mounting some folder, or running on

some file
• Ideal for students: code on the host, run in container
• Avoids the whole ”how is LLVM packaged on everyone’s

computer?” point
Downside: not something you can do on shared clusters.

21 -Case study of an out of tree LLVM tool- P. Virouleau

22 -Case study of an out of tree LLVM tool- P. Virouleau

Dealing with packaging
04

Shipping your tool

DIY
• Ship a shared library.
• Depends on the installed opt.

How is it compiled, what PM is enabled by default?

”Proper” package
• How is LLVM packaged for your target?

Ubuntu’s apt, LLVM’s apt, Guix, Module file?

Full build (aka ship opt/[lib]LLVM)
• Useful if no known working LLVM version (eg: using LLVM 15

on custom RHEL 8.6)
• Ship all LLVM vs ship one single statically ”small” tool

Set the options you want, LLVM’s CMake handles it!

23 -Case study of an out of tree LLVM tool- P. Virouleau

24 -Case study of an out of tree LLVM tool- P. Virouleau

Conclusion
05

Conclusion

Takeaways
• Integration with LLVM has evolved (IMO in a good direction).
• Be prepared for maintainance.
• Keep the diff minimal or upstream your passes.
• Investing in CI is worth it (for devs and users).
• LLVM documentation (programmers’ manual, doxygen) is a

must, reading source code teaches a lot!

Questions, comments?

25 -Case study of an out of tree LLVM tool- P. Virouleau

	Introduction and context
	Keeping up with LLVM
	Out-of-tree management
	Developing code
	Versions
	Passes

	Usability
	As a developer
	As a user

	Dealing with packaging
	Conclusion

