
Eliminating ManagedStatic

and llvm_shutdown



2 |

Using LLVM as a (shared) library

• We want this to Just Work – but sometimes it fails

• Global objects are in the way

…



3 |

Global objects in LLVM

• Command-line options (cl::opt and friends)

• Options set for component A could cause confusion (up to miscompilation) for component B

• New developments should prefer IR attributes over pass-specific options

• Logical isolation will eventually be needed anyway, but that is not our topic today

• On-demand generated tables (e.g., SelectionDAG EVTs)

• Effectively read-only

• No real conflict between components

• Various debugging odds and ends (llvm::dbgs(), timers for profiling, …)

• Cleaning those up could be quite painful

• Turn a blind eye because they aren’t needed for “production” purposes?

• This talk: General problem of global object lifetime

• Applies even to “read-only” tables



4 |

ManagedStatic and llvm_shutdown

• ManagedStatic is used to construct global objects only when they’re first used

• Once constructed, objects are added to a global linked list

• llvm_shutdown frees those objects in reverse order

• Q: Should a driver (plugin etc.) call llvm_shutdown when it is unloaded?

• There is no answer!

• If it calls llvm_shutdown, other components may be corrupted

• If it doesn’t call llvm_shutdown, it may leak memory

Bad code!



5 |

Solution: Remove ManagedStatic

• All uses of ManagedStatic can be replaced with a “function-scope static variable” pattern:

• The C++ runtime destructs these objects for us when libLLVM.so is unloaded (or at process exit)



6 |

Pattern: Pack related globals into a struct

• Take special note of the idea of registering sets of command-line options together using this pattern



7 |

Status of ManagedStatic removal

• I’ve been slowly landing patches to remove ManagedStatic from LLVM

• Stack on Phabricator: https://reviews.llvm.org/D129134

• Discourse: https://discourse.llvm.org/t/making-llvm-play-nice-r-when-used-as-a-shared-library-in-a-plugin-

setting/63306/

• Some of the changes are subtle and revealed “fun” issues

• Latest piece of “fun”:

• TableGen tools link against libLLVMSupport both statically and dynamically

• This leads to globals appearing twice, with conflicts between them, in some build configurations

• I don’t know why these conflicts didn’t cause bugs earlier

• Proposed solution is to stop treating libLLVMTableGen specially
• Stack on Phabricator: https://reviews.llvm.org/D138278

• Discourse: https://discourse.llvm.org/t/rfc-cleaning-up-how-we-link-tablegen-tools/66678

• I will continue to slowly push on this as a background task beside my real job ☺

• Please help by following best practice and avoid/remove ManagedStatic in your corner(s) of the world

Thank you!

https://reviews.llvm.org/D129134
https://discourse.llvm.org/t/making-llvm-play-nice-r-when-used-as-a-shared-library-in-a-plugin-setting/63306/
https://reviews.llvm.org/D138278
https://discourse.llvm.org/t/rfc-cleaning-up-how-we-link-tablegen-tools/66678



	Slide 1: Eliminating ManagedStatic and llvm_shutdown
	Slide 2: Using LLVM as a (shared) library
	Slide 3: Global objects in LLVM
	Slide 4: ManagedStatic and llvm_shutdown
	Slide 5: Solution: Remove ManagedStatic
	Slide 6: Pattern: Pack related globals into a struct
	Slide 7: Status of ManagedStatic removal
	Slide 8

