Iminating ManagedStatic
d llvm_shutdown

AMD¢1

together we advance_



Using LLVM as a (shared) library

- We want this to Just Work — but sometimes it fails
- Global objects are in the way

AMDZ1

together we advance_



Global objects in LLVM

Command-line options (cl::opt and friends)
Options set for component A could cause confusion (up to miscompilation) for component B
New developments should prefer IR attributes over pass-specific options
Logical isolation will eventually be needed anyway, but that is not our topic today

On-demand generated tables (e.g., SelectionDAG EVTS)
Effectively read-only
No real conflict between components
Various debugging odds and ends (llvm::dbgs(), timers for profiling, ...)
Cleaning those up could be quite painful
Turn a blind eye because they aren’t needed for “production” purposes?

This talk: General problem of global object lifetime
Applies even to “read-only” tables

AMDZ1

together we advance_



ManagedStatic and llvm_shutdown

ManagedStatic is used to construct global objects only when they're first used

// Lazy-initialized global instance of options controlling the command-line
// parsepr and general handling.

static ManagedStatic<CommandLineCommonOptions> CommonOptions;

Once constructed, objects are added to a global linked list
llvm_shutdown frees those objects in reverse order

Q: Should a driver (plugin etc.) call llvm_shutdown when it is unloaded?

There is no answer!
If it calls llvm_shutdown, other components may be corrupted
If it doesn’t call llvm_shutdown, it may leak memory

AMDZ1

together we advance_



Solution: Remove ManagedStatic

All uses of ManagedStatic can be replaced with a “function-scope static variable” pattern:

static CommandLineCommonOptions &getCommonOptions() {

1zy-initialized global instance of options controlling the command-line
// parser and general handlinag.

static CommandLineCommonOptions CommonOptions;

return CommonOptions;

}

The C++ runtime destructs these objects for us when libLLVM.so is unloaded (or at process exit)

AMDZ1

together we advance_



Pattern: Pack related globals into a struct

// ALl global objects associated to the DebuagCounter, including the DebuaCounter
/l itself, are owned by a single global instance of the DebugCounterOwner
// struct. This makes it easier to control the order in which constructors and
// destructors are run.
struct DebugCounterOwner {
DebugCounter DC;
DebugCounterList DebugCounterOptiond
“debug-counter”, cl::Hidden,
cl::desc("Comma separated 1ist of debug counter skip and count"),
cl::CommaSeparated, cl::location(DC)};
cl::opt<bool> PrintDebugCounter{
“print-debug-counter", cl::Hidden, cl::init(false), cl::0ptional,
cl::desc("Print out debug counter info after all counters accumulated")};

DebugCounterOwner() { -

[/ Print information when destroyed, iff command line option is specified.
~DebugCounterOwner(] {
)

} // anonymous namespace
void 1lvm:: initDebugCounterOptions() { (void)DebugCounter::instance(); }

DebugCounter &DebugCounter::instance() {
static DebugCounterOwner 0;
return 0.0C;

¥

- Take special note of the idea of registering sets of command-line options together using this pattern
AMDQQ1

together we advance_



Status of ManagedStatic removal

I've been slowly landing patches to remove ManagedStatic from LLVM
Stack on Phabricator: https://reviews.llvm.org/D129134

Discourse: https://discourse.llvm.org/t/making-llvm-play-nice-r-when-used-as-a-shared-library-in-a-plugin-
setting/63306/

Some of the changes are subtle and revealed “fun” issues

Latest piece of “fun”:
TableGen tools link against libLLVMSupport both statically and dynamically

This leads to globals appearing twice, with conflicts between them, in some build configurations
| don’t know why these conflicts didn’t cause bugs earlier

Proposed solution is to stop treating libLLVMTableGen specially
Stack on Phabricator: https://reviews.llvm.org/D138278
Discourse: https://discourse.llvm.org/t/rfc-cleaning-up-how-we-link-tablegen-tools/66678

| will continue to slowly push on this as a background task beside my real job ©
Please help by following best practice and avoid/remove ManagedStatic in your corner(s) of the world

Thank you!

AMDZ1

together we advance_


https://reviews.llvm.org/D129134
https://discourse.llvm.org/t/making-llvm-play-nice-r-when-used-as-a-shared-library-in-a-plugin-setting/63306/
https://reviews.llvm.org/D138278
https://discourse.llvm.org/t/rfc-cleaning-up-how-we-link-tablegen-tools/66678




	Slide 1: Eliminating ManagedStatic and llvm_shutdown
	Slide 2: Using LLVM as a (shared) library
	Slide 3: Global objects in LLVM
	Slide 4: ManagedStatic and llvm_shutdown
	Slide 5: Solution: Remove ManagedStatic
	Slide 6: Pattern: Pack related globals into a struct
	Slide 7: Status of ManagedStatic removal
	Slide 8

