
Linux Kernel
Functional Testing
Rémi Duraffort, Linaro Ltd
remi.duraffort@linaro.org

https://linaro.org

Who am I?
● Rémi Duraffort
● Principal Tech Lead at Linaro
● OSS developer since 2007

○ VLC media player
○ v8 js engine
○ PRoot/CARE
○ LAVA, KissCache, lavacli, meta-lava, DummySYS, lavafed, …
○ tuxrun, tuxsuite cli, …

● LAVA Architect for 8 years

LKFT
Linux Kernel Functional Testing

What is LKFT?
“Improve the Linux kernel quality on the Arm architecture by

performing regression testing and reporting on selected Linux
kernel branches and the Android Common Kernel (ACK) in real

time.”

● Lead by Linaro
● Automated system to build and test a set of linux kernel

trees
○ LTS trees
○ mainline
○ next

● 48 hour LTS regression reporting SLA

LKFT 2023 numbers
Linux Kernel
● 465 RC
● 2628 revisions
● 1.6M kernels
● 200M tests

Android Common Kernel
● 580M tests (VTS, CTS, …)

Only 3 engineers

LKFT Architecture
How to build and test so many kernels?

LKFT architecture

submit

generate

Build and test

LKFT Architecture

tuxmake
tuxmake

tuxmake
tuxmake

storageCloud Build

store

submit

results

generate

LKFT Architecture

tuxmake
tuxmake

tuxmake
tuxmake

tuxrun
tuxrun

tuxrun
tuxrun

storageCloud Build

Cloud Test
store

submit

results

results

submit

generate

LKFT Architecture

tuxmake
tuxmake

tuxmake
tuxmake

tuxrun
tuxrun

tuxrun
tuxrun

Server

Worker01

Worker02

storageCloud Build

Cloud Test
store

subm
it

submit

KissCache

results

results

submit

generate

Building

TuxMake
● OSS cli application

○ portable and repeatable Linux kernel builds
■ Containerized builds

○ https://tuxmake.org
● Multiple toolchains

○ gcc-8/9/10/11/12
○ clang-10/11/12/13/14/15/android/nightly

● Multiple target-archs
○ arm64/armv5/armv7
○ i386, x86_64
○ mips, powerpc, riscv
○ arc, hexagon, openrisc, parisc, s390, sh, sparc, um

● Tuxsuite SaaS runs TuxMake at scale (5k builds in parallel) in the cloud

https://tuxmake.org

TuxMake explained

1. Pull the right container image
a. docker.io/tuxmake/x86_64_gcc-12:latest...

2. Create a unique build directory
a. ~/.cache/tuxmake/builds/XXX/build

3. Start the container with bindings
a. Sources from CWD
b. Build directory

4. Invoque make
a. make --silent --keep-going --jobs=16 O=~/.cache/tuxmake/builds/XXX/build

ARCH=x86_64 SRCARCH=x86 CROSS_COMPILE=x86_64-linux-gnu- defconfig
5. …
6. Move artefacts in ~/.cache/tuxmake/builds/XXX

a. kernel, headers.tar.xz, modules.tar.xz
b. metadata.json

TuxMake containers
● One container for each combination

a. Toolchain version X target-architecture
i. arm_gcc-11
ii. arm_gcc-12
iii. …

● https://hub.docker.com/u/tuxmake
a. 216 repositories
b. Rebuild monthly

i. Except for clang nightly
1. Used by Clang CI pipeline

https://hub.docker.com/u/tuxmake

Testing
Virtual devices with TuxRun

TuxRun
● OSS cli application

○ portable and repeatable kernel tests
○ https://tuxrun.org

● Multiple devices
○ fvp-aemva (ARMv9.3)
○ fvp-morello
○ qemu-armv5/v7/v7be/64/64be
○ qemu-i386/x86_64
○ qemu-mips32/32el/64/64el, qemu-ppc32/64/64le, qemu-riscv32/64
○ qemu-s390/sh4/sparc

● Multiple tests
○ ltp-*, kunit, kselftest, rcutorture, perf, v4l2, libgpiod, libhugtlbfs

● Tuxsuite SaaS runs TuxRun at scale (5k tests in parallel) in the cloud

https://tuxrun.org

TuxRun explained

1. Download artefacts
a. kernel, dtb, rootfs, modules, …

i. Provide default rootfs for every architecture
b. Inject modules into rootfs

2. Start the container with artefacts embedded
3. Run qemu-system-aarch64
4. Parse the output for crashes
5. Run the tests
6. Store results.json

TuxRun rootfs
● Rootfs for multiple architecture are painful to build
● Default rootfs for each architect

a. Buildroot based: 19
b. Debian based: 19
c. Can still use custom ones

● Rebuilt regularly
a. Buildroot new releases

i. New ltp-testsuite package
b. Debian updates
c. Tested before deployment

i. Recently found multiple issues in qemu 7.2

TuxMake and TuxRun
● Combine TuxMake and TuxRun
● Bisect a run regression

○ Call git bisect
■ Checkout code
■ Cross-compile with tuxmake
■ Cross-run with tuxrun

Testing
Real devices with LAVA

LAVA
● Linaro Automated Validation Architecture
● Test execution system: testing software on real hardware

○ Deploy, Boot and Test
● Usages

○ Boot testing: kernelci
○ System level testing: LKFT
○ Bootloader/firmware testing

● Supports 356 device-types

Without LAVA

% power on board
% telnet localhost 2000
<enter>
=> dhcp
=> setenv serverip 10.3.1.1
=> […]
=> bootm 0x01000000 - 0x03f00000
[…]
raspberrypi3 login: root
run-test.sh
[…]
% power off board

Power control

Serial relay

tftp&nfs server

kernel dtb rootfs

LAVA explained

Power control

Serial relay

tftp&nfs server

kernel dtb rootfs

worker
Job
Configuration

LAVA explained

Power control

Serial relay

tftp&nfs server

worker 1

Power control

Serial relay

Power control

Serial relay

Power control

Serial relayworker 2

worker N

server

Users

Network performances
KissCache

KissCache
● LAVA downloads a lot of artifacts

○ Multiple times
○ In parallel (almost exact same time)

● SQUID should fix this?
○ Short answer NO!
○ Artefacts are served over https

■ Requires to fake SSL certificates
● Create a wildcard certificate (for every domains)
● Install on the clients

○ Multiple concurrent downloads of the same artefacts
■ SQUID will download multiple times the same artefacts
■ Cache only when a first download is completed

KissCache
● A simple and stupid caching server

○ Cache HTTPS resources
○ Download once while streaming to multiple clients
○ https://gitlab.com/Linaro/kisscache

● Not transparent (prefix based)
○ https://kisscache/api/v1/fetch/?url=https://example.com/rootfs.ext4.zst

■ no need for fake SSL certificates
○ Need support in the clients

● Automatic retries on multiple errors
○ 408, 413, 420, 425, 429, 430, 500, 502, 503, 504, 507, 509, 529 and 598
○ Partial download

■ Will use range request to download remaining content

https://gitlab.com/Linaro/kisscache

KissCache
● Over 2.5 years

○ 25 TB downloaded (from internet)
○ 1.3 PB served (local network) by KissCache
○ Network usage divided by 52x
○ Improved stability

Storing job results

SQUAD
● Software Quality Dashboard aka SQUAD
● A data lake

○ Gather results (builds, tests,
measurements, …)

○ 3.3 billions results
● Create reports

○ Failures, regressions, …
● Links:

○ https://qa-reports.linaro.org/
■ Linaro instance

○ https://qa-reports.linaro.org/lkft/
■ LKFT project page

https://qa-reports.linaro.org/
https://qa-reports.linaro.org/lkft/

The end

LKFT Architecture

tuxmake
tuxmake

tuxmake
tuxmake

tuxrun
tuxrun

tuxrun
tuxrun

Server

Worker01

Worker02

storageCloud Build

Cloud Test
store

subm
it

submit

KissCache

results

results

submit

generate

Thank you

