
InnoDB Change Buffer:
Unsafe at Any Speed
Marko Mäkelä
Lead Developer InnoDB
MariaDB Corporation

What was the InnoDB Change Buffer good for?

[Public]

● If a B-tree leaf page of a secondary index is not available in the buffer pool, write
modifications to a separate change buffer B-tree in the system tablespace.

○ SELECT, CHECK TABLE, or any unbuffered operation will force a merge of changes.
○ Converts some random access to sequential. (Remember HDD seek times?)
○ Initially for INSERT, later (5.5) for DELETE and purge, but never for ROLLBACK.

● Problems: Unpredictably growing system tablespace, hangs, corruption, …
○ Write amplification: not only INSERT, but also DELETE and purge must duplicate the

entire record and some metadata (to update as little as 1 bit in the final page)
○ Unconditional overhead of maintaining change buffer bitmap (how full is a page?) in

case someone might enable insert buffering later
○ Mystery corruptions (MDEV-9663) that are extremely hard to reproduce

https://jira.mariadb.org/browse/MDEV-9663

● If a B-tree leaf page of a secondary index is not available in the buffer pool, write
modifications to a separate change buffer B-tree in the system tablespace.

○ SELECT, CHECK TABLE, or any unbuffered operation will force a merge of changes.
● Lots of “stars” need to be aligned, in several threads:

○ Page writes or eviction may be blocked by page latches held by some threads
○ innodb_change_buffering_debug=1 (evicting pages to exercise the change

buffer) won’t work if the current thread is holding latches on dirty pages.
■ Even more so with MDEV-30400, which fixes some hangs introduced in MySQL 5.7.

○ Purge of committed transaction history may be blocked by active read views.
● Effective tests will require smart “cool down” periods and (un)lucky timing.

Why is it Hard to Cover the Change Buffer in Tests?

[Public]

https://jira.mariadb.org/browse/MDEV-30400

Magic Bullets: Random Query Generator (RQG) and RR

[Public]

● Due to the complexity, impossible to guess how some corruption evolved
● Enter rr: lightweight recording & deterministic debugging

○ Saves a deterministic execution trace of randomly interleaved processes or threads.

○ The exact sequence of events from the start is available in a GDB based interface.

○ Breakpoints, watchpoints, forward and backward execution (reverse-continue)

○ Optimized code can be debugged too (at register and instruction level if needed).
● Perfect for “once in a blue moon” cases for which RQG simplifier is impractical

https://rr-project.org/

The Tale of a Corruption Bug
introduced in MySQL 5.7

Corruption after DROP INDEX, ADD INDEX, INSERT (1/3)

[Public]

mysqld: /data/Server/bb-10.6-MDEV-30009A/storage/innobase/ibuf/ibuf0ibuf.cc:3615:
dberr_t ibuf_insert_to_index_page_low(const dtuple_t*, rec_offs**, mem_heap_t*,
mtr_t*, page_cur_t*): Assertion `!__builtin_expect(((page_cur->block)->page.zip.data)
!= 0, 0)' failed.
● This means that a page overflow occurred during a change buffer merge.

○ The assertion is related to a last-resort fixup for ROW_FORMAT=COMPRESSED.
● Why? DROP INDEX did not discard old entries, and neither did ADD INDEX

○ Lazy deletion: Usually buf_page_create() collects the garbage.
○ But, the MySQL 5.7 “bulk index creation” failed to pay back this maintenance debt.
○ “Complexity is the friend of security bugs” (source: a mandatory Oracle course)

Corruption after DROP INDEX, ADD INDEX, INSERT (2/3)

[Public]

● Immediate root cause: The “buffered changes exist” bit was cleared without
actually deleting the change buffer records for the page.

● How to prove this in rr replay? Condensed version:
○ break ibuf_bitmap_page_get_bits_low
○ reverse-finish …, set a write watch point on the bitmap byte for this page

■ Thank $DEITY for the 80386 debug registers and their GDB support!
○ Set breakpoints on ibuf_insert() and ibuf_delete_recs() for this page
○ reverse-continue, backtrace, print index.id, print index.name

● We were unable to create a simplified RQG grammar or test case for this.

○ The large RQG grammar made use of innodb_change_buffering_debug=1.

https://en.wikipedia.org/wiki/X86_debug_register

Corruption after DROP INDEX, ADD INDEX, INSERT (3/3)

[Public]

Possible consequences of applying bogus changes to index pages:
● Wrong results, broken MVCC or locking in anything that uses the index
● Crash on change buffer merge (as part of any operation, even CHECK TABLE)

○ In our rr replay trace: Page overflow on applying an INSERT operation
● January 2023 support case: Running out of space on when splitting a page

○ The index page on a NULLable column contained records for a NOT NULL column,
apparently due to merging garbage change buffer records.

○ Length bytes were misinterpreted as “null flags bitmap” and bogus lengths were read
● Various incarnations of the long-time mystery bug MDEV-9663

○ Some causes of “index out of sync with table” involve the change buffer, some don’t.

https://jira.mariadb.org/browse/MDEV-9663

rr replay /data/results/1669137694/TBR-1672/1/rr/latest-trace
continue run from the start to SIGABRT
reverse-continue to un-catch SIGABRT
tbreak ibuf0ibuf.cc:562 inside ibuf_bitmap_page_get_bits_low()
reverse-continue backtrack to the above breakpoint
display/i $pc show the next instruction ($rip for Intel fans)
stepi execute the next instruction
watch -l *(char*)$rbx set a write watchpoint on the bitmap byte
disable display 1
reverse-continue backtrack to our watchpoint

rr replay session (1/3): Setting Watchpoint on Bitmap

[Public]

rr replay session (2/3): Evaluating the Watchpoint

[Public]

frame 2 a buffered INSERT had set the “buffered” flag
reverse-continue to the ADD INDEX that had cleared the flag
frame 2
set $id=block.page.id_.m_id
frame 3
print m_index.id 394
print m_index.name m_name="idx1"
frame 8
print m_user_thd.query_string
disable 2 we are no longer interested in this watchpoint

rr replay session (3/3): Conclusive evidence

[Public]

break ibuf0ibuf.cc:2287 inside ibuf_delete_recs()
tbreak btr0cur.cc:1598 call of ibuf_insert()
cond 4 page_id.m_id==$id
reverse-continue hits the call of ibuf_insert()
set $i=cursor.page_cur.index
print $i.name m_name="MarvÃ£o_idx3" (not "idx1")
print $i.id 321 (not 394)
continue to SIGABRT
Because ibuf_delete_recs() was never called (for any page), the garbage from
before ALTER TABLE…ADD INDEX was wrongly applied to the new index.

Déjà vu? Bon voyage! (Matti Nykänen)

[Public]

● The shutdown hang MDEV-30009 is similar to MDEV-20934. What happened?
● MDEV-19514 in MariaDB 10.5 aimed to made crashes more predictable by

avoiding “unsolicited” change buffer merges (only do it when absolutely needed)
● We had never reproduced the shutdown hang ourselves; 2 customers did, in

production. The older fix was for a MariaDB Server 10.1 hang, but in 10.5, it was
(incorrectly) adjusted for MDEV-19514.

● We were finally able to reproduce the hang in MariaDB 10.6, thanks to
○ Simplified buffer pool and locks in 10.5 and 10.6
○ Improved tooling (rr record integrated with RQG)
○ Testing at scale (hundreds of concurrent server instances on two huge machines)

https://taketonews.com/do-you-remember-these-flying-phrases-of-matti-nykanen/
https://jira.mariadb.org/browse/MDEV-30009
https://jira.mariadb.org/browse/MDEV-20934
https://jira.mariadb.org/browse/MDEV-19514
https://jira.mariadb.org/browse/MDEV-19514

Other Corruption Caused by
the Change Buffer

Crashing on Corrupted Page is Unhelpful (MDEV-13542)

[Public]

● Even CHECK TABLE could trigger a crash within a change buffer merge
○ Until MDEV-13542 (a.k.a. MySQL Bug #10132) was fixed in MariaDB Server 10.6

● MySQL Bug #61104 (2011) remained a mystery for years. Possible causes:
○ MDEV-22497: a false negative answer to “could the page become empty?”
○ MDEV-24709, MDEV-24448/MDEV-24449/MDEV-30422: race conditions while

applying log in recovery or backup
○ (MDEV-30009 starting with MySQL 5.7/MariaDB 10.2): applying a stale purge

● It pays off to diagnose rr replay or core dumps of obscure assertion failures.
○ Assertions are like lottery tickets: if you do not write them, you cannot win.
○ Recovery improvements help find tricky cases: MDEV-12353, MDEV-12699,

MDEV-14425, MDEV-15528, MDEV-24626, MDEV-25506, MDEV-30479.

https://jira.mariadb.org/browse/MDEV-13542
https://jira.mariadb.org/browse/MDEV-13542
https://bugs.mysql.com/bug.php?id=10132
https://bugs.mysql.com/bug.php?id=61104
https://jira.mariadb.org/browse/MDEV-22497
https://jira.mariadb.org/browse/MDEV-24709
https://jira.mariadb.org/browse/MDEV-24448
https://jira.mariadb.org/browse/MDEV-24449
https://jira.mariadb.org/browse/MDEV-30422
https://jira.mariadb.org/browse/MDEV-30009
https://jira.mariadb.org/browse/MDEV-12353
https://jira.mariadb.org/browse/MDEV-12699
https://jira.mariadb.org/browse/MDEV-14425
https://jira.mariadb.org/browse/MDEV-15528
https://jira.mariadb.org/browse/MDEV-24626
https://jira.mariadb.org/browse/MDEV-25506
https://jira.mariadb.org/browse/MDEV-30479

Mitigation and
Lessons Learned

Some Corruption Mitigations in MariaDB Server

[Public]

● MDEV-13542 (MariaDB 10.6) prevents many crashes due to corruption
○ Reports of any remaining crashes on corruption are ver; our fault injection can only

cover fairly basic things, such as page checksum failures.
● MDEV-19514 (MariaDB 10.5) avoids “random” change buffer merges

○ innodb_force_recovery=4 is no longer needed (and cannot corrupt further).
○ This turned out to improve performance, contrary to some fears.

● MDEV-20864 (MariaDB 10.2) Introduce debug option
innodb_change_buffer_dump (diagnostic help)

● MDEV-21069 Crash on DROP TABLE if the data file is corrupted
● MDEV-29905 Change buffer operations fail to check for log file overflow

https://jira.mariadb.org/browse/MDEV-13542
https://jira.mariadb.org/browse/MDEV-19514
https://jira.mariadb.org/browse/MDEV-20864
https://jira.mariadb.org/browse/MDEV-21069
https://jira.mariadb.org/browse/MDEV-29905

Some More Corruption Mitigations in MariaDB Server

[Public]

● MDEV-27734 (10.5): Set innodb_change_buffering=none by default
○ No significant performance regression was observed

● MDEV-27735 (10.9): Deprecate the parameter innodb_change_buffering
● MDEV-29694 (11.0): Remove the InnoDB change buffer

○ On upgrade from earlier versions, change buffer merge will be completed and the
change buffer removed to prevent downgrade.

○ The change buffer bitmaps will be ignored and reset during upgrade.

○ Change buffer bitmaps need not be maintained (they were initialized to safe values).

https://jira.mariadb.org/browse/MDEV-27734
https://jira.mariadb.org/browse/MDEV-27735
https://jira.mariadb.org/browse/MDEV-29694

What can we Learn from This?

[Public]

● InnoDB until MySQL 5.1 was based on Transaction processing by Gray&Reuter.
○ Except some InnoDB “innovations”: insert buffer, adaptive hash index.

● Layer boundaries are a powerful abstraction that should not be violated lightly.
○ Extensive tricks are needed to avoid deadlocks or inconsistency.
○ Those tricks and rules can be forgotten or overlooked too easily by future developers.

● Strictly following layers and simple design rules makes life easier.
○ Easier to write unit tests and reach full code coverage in integration testing.
○ Easier to determine what is right and wrong when debugging or reviewing code.
○ If you can’t explain something in simple terms, maybe something is wrong.

● Redundant or partly duplicated data structures are prone to cause inconsistency.

THANK YOU

