
MachineOS: a Trusted, SecureBoot Image-based
Container OS
Ryan Harper, Cisco

FOSDEM2023 2023-02-04

1

MachineOS
Designed[1] for appliances in lights-out/hands-off environments.

• Utilizes UEFI SecureBoot platform and TPM 2.0 devices
• Guards a Secure Unique Device Identity (UUID) in TPM for identity and

authenticity
• TPM secrets only available to kernel/userspace if chain-of-trust is verified

running signed software.
• Supports unattended encrypted storage for at-rest protection of device

data
• Continuous and Incrementation Updates

1. Securing TPM Secrets in the Datacenter LSS2021 P.Moore, J. Latten

2

https://www.paul-moore.com/docs/securing_tpm_secrets-pmoore_jlatten-lss2021.pdf

Root of Trust - Secure Unique Device Identity
• X.509v3 certificate and an associated key-pair which are protected in

hardware
• Certificate contains the product identifier and serial number and is rooted

in Public Key Infrastructure.
• Key pair and a certificate are inserted into hardware during manufacturing.
• The certificate provides an immutable identity for the device that is used

to verify that the device is a genuine product, and to ensure that the device
is well-known to the customer’s inventory system.

3

MachineOS - Product Runtime
+-----------------+ +-----------------+
| Platform Device | | mOS UKI |
+-----------------+ +-----------------+
	Verify	
TPM: LOCKED +---------->	kernel+initrd	
Svc: inactive	SecureBoot	+cmdline
+-----------------+ +--------+--------+

^ |
| Load EA Policy |

Update | Verify PCR7 |
Reboot | Verify Version |

| V
+--------+--------+ +-----------------+
| Platform Device | | Platform Device |
+-----------------+ Read Rot +-----------------+
	Extend	
TPM: LOCKED	<----------+ TPM: unlocked	
Svc: Active	Decrypt	Svc: inactive
	Verify	
+-----------------+ +-----------------+

4

MachineOS - Working with MachineOS
+---------------------+
| Least Frequent |
+---------------------+

+--------------------+ |
|Keys and Certs | |
+--------------------+ |

|
Generate RoT Cert -> Generate Product Keys |

|
+--------------------+ |
|Platform | |
+--------------------+ |

|
Configure Firmware -> Provision TPM |

|
+--------------------+ |
|Product Image | |
+--------------------+ |

|
Pull -> Verify -> Sign -> Generate |

|
+--------------------+ |
| OCIs | |
+--------------------+ |

|
Build -> Sign -> Publish |

V
+---------------------+
| Most Frequent |
+---------------------+

5

MachineOS - OCI Build, Sign, Publish
+--------------+ +------------+
| | stacker build | |
| image1 yaml +----+----------------> | | ZOT
| | | | OCI-1 | +-------------+
| | | | +---+ | |
+--------------+ | | | | | |
+--------------+ | +------------+ | | |
		+---->	signed sha			
image2 yaml +----+	+------------+	publish				
		+------------>				
		+------------+				
+--------------+ | | | | | |

| | | | | |
+---------------+ | | OCI-2 +---+ | |
| TRUST +----------------+ | | | |
| | sign | | | +-------------+
| user.key | | +------------+
| user.cert | +---->| signed sha |
| | +------------+
+---------------+

6

MachineOS Lifecycle - Product Image Build
pub/priv zothub.io MyZotService.yaml mOS Service Image

+--------------------------+ +--------------------------+ +----------------------------+
+--------------------+		- src: zot://mos:v1		+------------------------+						
	mOS v1.0 UKI OCI			- src: zot://zot:v1.4.3			OCI Layout			
							+--------------------+			
			+------------+-------------+			OCI:mos:v1				
						+--------------------+				
							user pubkey sig			
+--------------------+				+--------------------+						
	SHA256SUM A		+----v-------+							
+--------------------+					+--------------------+					
	mOS pubkey sig		Pull	ImgBuilder	Build			OCI:zot:v1.4.3		
+--------------------+--+-------->	+-------->	+--------------------+								
	Verify		Sign			user pubkey sig				
+--------------------+--+-------->				+--------------------+						
	zot v1.4.3 OCI									
			+----^-------+							
					+------------------------+					
					+----------------------+					
+--------------------+	+-------+-------+		myzotservice.yaml							
	SHA256SUM B			TRUST		+----------------------+				
+--------------------+					user pubkey sig					
	zot pubkey sig			user.key		+----------------------+				
+--------------------+		user.cert								
+--------------------------+ +---------------+ +----------------------------+

7

MachineOS Components – Runtime
Runtime Image

• Single UEFI SecureBoot Image (UKI-like)
– Stubby
– Linux kernel
– Initrd with MachineOS tools
– Embedded kernel command line
– Signatures/Certs

• One or more signed OCI Container images

Runtime Tools
Tools for verification and execution of signed OCI

• mosctl
– install mOS system
– verify and start containers/services
– update mOS system

• trust
– Provision TPM with secrets
– Access secrets, certs, key pairs
– Load TPM EA Policies
– Extend PCRs during early boot

8

https://github.com/puzzleos/stubby
https://github.com/project-machine/mos
https://github.com/project-machine/trust

MachineOS Components – Build Tools
Build Platform Tools
Build MachineOS OCIs and run clusters of mOS workloads

• stacker
– build OCIs using signed SquashFS layers annotated with verity hashes

• machine
– Run instances of mOS (baremetal, virtual)

9

https://github.com/project-stacker/stacker
https://github.com/project-machine/machine

Anatomy of UKI-like boot image
Consolidate the kernel, initramfs and signatures into single EFI application.

• Tightly couple kernel, initramfs and cmdline for security
• Fewer moving parts for updates
• Restricted kernel command line with some flexibility for certain parameters
• Signed with Product release key, verified with Product certificate which

contains the device UUID that must match the UUID in RoT certificate.

.----------.
| |
| stubby | <--- Verifies cmdline from UKI or boot entry
kernel

initrd

cmdline

sigs
`----------'

10

Boot Process - Hardware -> Firmware -> Boot-
loader

• Firmware signatures checked by hardware platform
• UEFI SecureBoot

– UEFI verifies bootloader has valid signature found in firmware key
database

– Once verified bootloader will execute with the path to the UKI
provided as input

• Bootloader
– Verifies signature of the UKI with UEFI and shim key databases
– Extend PCR7 with the signing key/cert measurements
– Validates cmdline (passed in boot entry or built-in to UKI)
– Execute loaded kernel,initramfs with cmdline

11

Boot Process - Kernel -> Early Userspace Ac-
cessing TPM

• Normal kernel boot and transition into initramfs’s /sbin/init
• Load the EA policies into TPM and attempt to read secrets
• TPM NVIndicies unlocked if PCR7 matches and Version NVIndex is correct

for the loaded policy. On failure, system is halted.
• Load RoT keys, certs, and mOS LUKS passphrase into kernel keyring

readable only by root.
• Extend PCR7 with well-known measurement sealing further access to

protected TPM NVIndicies

12

Boot Process - Verifying Product and Starting
Workload
Verifying Product Manifest

• Mount encrypted filesytem using LUKS key extracted from TPM
• Verify signature of Product manifest using Product certificate stored in

LUKS encrypted filesystem
• Verify Product manifest certificate is signed by manifestCA included in

initrd
• Verify signature of Product manifest using Product certificate
• Verify Product manifest certificate is signed by CA included in initrd

Activating Workload

• Use Product manifest to mount dmverity-protected OCIs and service
containers

• Optionally pivot-root into a ‘boot’ OCI
• Start containers

13

Verifying OCIs with DM-Verity
• OCIs built by stacker using SquashFS layers are annotated with verity

hashes.
• Mount OCI via cryptsetup/dm-verity using hashes stored in annotation
• As OCI data is accessed through dm-verity block device, the kernel will

verify the integrity of the data against the loaded hash.
• Failed verification results in I/O errors

Later today Scott Moser - Secure Container Storage @ Containers DevRoom @
16:05

14

https://github.com/project-stacker/stacker
https://github.com/project-machine/atomfs
https://fosdem.org/2023/schedule/event/container_secure_storage/
https://fosdem.org/2023/schedule/event/container_secure_storage/

MachineOS - Incremental and Continus Updates
Updates may upgrade or downgrade system by loading a new manifest specifying
different OCI images.

mOS must perform the same verification of the update as is done during initial
boot, namely verifying signatures on the manifest and on the OCI images
included.

• Update configuration data with pointer to the specified version of image
• Restart Updated Containers
• If UKI or other boot/rootfs changes, reboot system.

mOS can be configured to sync from an OCI registry e.g. zot via zot-sync to
keep the system patched and up-to-date.

15

https://github.com/project-zot/zot

Revocations via Policy Version update
mOS uses TPM Extended Authorizations (EA) policy to gate access to secrets
and leverages a Policy Version NVIndex in addition to PCR7 to restrict access
between Production and Management/Owner.

TPM access to LUKS and RoT keys involve two steps:

• Verify PCR7 matches expected values
• Verify NVIndex holding ‘EA policy version’ value is at the expected value.

Production/Runtime UKIs do not have access to the TPM owner/admin password
which is stored in the TPM itself during provisioning[1]. A separate UKI signing
key and EA policy is used in a restricted management EFI application which can
be used to increment the Policy Version NVIndex and prevent previous UKIs
from being able to run and unlock access to the TPM.

Future work evaluating use of TPM counting indicies as proposed in the UAPI
SecureBoot an alternative to using a secondary key/mgmt EFI app which must
also be kept secret.

1. Securing TPM Secrets in the Datacenter LSS2021 P.Moore, J. Latten

16

https://www.paul-moore.com/docs/securing_tpm_secrets-pmoore_jlatten-lss2021.pdf

Tools for building mOS and Container images
• project-stacker[1][2]

– Create OCIs with SquashFS layers
– Annotated OCI with dm-verity hashes in annotations

• project-zot[2][3]
– OCI Native Image Repository
– CNCF Sandbox Project
– Unprivileged single binary
– Multi-arch, Multi-os
– scanning, authentication, authorization, dedup included

1. https://github.com/project-stacker/stacker
2. https://stackerbuild.io
3. https://github.com/project-zot/zot
4. https://zotregistry.io

17

Questions
Connect with Project Machine @ Project Machine Discussions

Thank You
• Serge Hallyn, Cisco
• Joy Latten, Cisco
• Scott Moser, Cisco Secure Container Storage
• Paul Moore, Microsoft

Project Machine

18

https://github.com/project-machine/project-machine/discussions
https://fosdem.org/2023/schedule/event/container_secure_storage/
https://github.com/project-machine

	MachineOS: a Trusted, SecureBoot Image-based Container OS
	MachineOS
	Root of Trust - Secure Unique Device Identity
	MachineOS - Product Runtime
	MachineOS - Working with MachineOS
	MachineOS - OCI Build, Sign, Publish
	MachineOS Lifecycle - Product Image Build
	MachineOS Components – Runtime
	Runtime Image
	Runtime Tools

	MachineOS Components – Build Tools
	Build Platform Tools

	Anatomy of UKI-like boot image
	Boot Process - Hardware -> Firmware -> Bootloader
	Boot Process - Kernel -> Early Userspace Accessing TPM
	Boot Process - Verifying Product and Starting Workload
	Verifying OCIs with DM-Verity
	MachineOS - Incremental and Continus Updates
	Revocations via Policy Version update
	Tools for building mOS and Container images
	Questions
	Thank You

