

IDP-Z3, a reasoning engine for FO(.)

A truly declarative approach to programming

Pierre Carbonnelle KU Leuven

The Turing test

I'm twice the age of my son, who is 15 years younger than me. How old am I?

Let x be your age. Your son's age is x - 15.

You are twice the age of your son, so 2 * (x - 15) = x.

Therefore, 3x = 15 + 2x.

Solving for x, you get x = 45.

So you are 45 years old.

Technical challenges

- use natural language
- sense of humor
- cognitive skills = capability...
 - o ... to learn from others through symbolic communication,
 - ... to apply knowledge in new ways to perform new tasks,
 - ... to ask relevant questions,
 - o ... to explain its own reasoning, ...

Knowledge Representation and Reasoning

Program vs. Knowledge

$$f = m*a;$$

VS.

$$F = m \cdot a$$

Prolog

```
vote :- moreThan18.
```

VS.

vote ⇔ age ≥ 18.

Prolog is a programming language!

Programming

The Knowledge Base paradigm

What is knowledge, anyway?

A statement of knowledge is a statement that is true...

- ... in all possible worlds
- ... or in all acceptable worlds
- ... or in all desirable worlds
- ... or in a particular world

Propositional attitudes

(Tractatus, Wittgenstein, on possible world semantics)

Attributes of a good Knowledge Representation language

- it uses symbols with simple semantics (no complex "data structures")
- its statements are close to natural language
- it is expressive
 (it has constructs such as quantification)

First Order logic is insufficient as a KR language

- it uses symbols with simple semantics (no complex "data structures")
- its statements are close to natural languages
- it is expressive (has constructs such as quantification, aggregates, inductive definitions, ..)

Introducing FO(.) (FO-dot)

FO(.) = First Order Logic extended with:

- Types
- (Inductive) definitions
- Linear arithmetic
- Aggregates (cardinality, min, max)
- Partial functions
- Intensional objects

fo-dot.readthedocs.io/

Examples

```
activity() = Outdoor_sport ⇒
     (end_time() ≤ 8) Λ ( have_masks() ν have_Covid_Safe_Ticket() ).
\forall c \in course: \#\{s \in \text{student: attend}(s,c)\} \leq \text{capacity}(\text{room}(c)).
    [1% tax for Heritage in Flemish region]
    tax_rate() = 1 ← registration_type() = Heritage
                     Λ region() = Flemish_Region.
    [2% tax for Social Dwellings in Flemish region]
    tax_rate() = 2 ← registration_type() = Social_Dwelling
                     Λ region() = Flemish_Region.
```

Core technologies developed by KUL

IDP-Z3

IDP-Z3 is a reasoning engine for FO(.), with the following artificial cognitive skills:

- "Is it possible?" = Model checking
- "What is possible?" = Model generation / expansion
- "What is relevant?" = Relevance
- "What are the logical consequences?" = Propagation
- "Why is this a consequence?" = Explanation
- "What is the optimal possible world?" = Optimization

www.idp-z3.be Host language: Python

The Interactive Consultant

Challenge

Engineer a design that meets customer requirements

Solution

A novel class of applets that performs various forms of reasoning in a domain of expertise.

Interactions with the engineer

Research Partners

- <Industrial multinational>
- Siemens
- Flanders Make
- Intelli-Select
- Notaries

- ⇒ Reduce decision time from 3 hours to 5 minutes.
- ⇒ Low development cost (< 10 days)

Case study

Experts in custom industrial components^[2]

- assembled from 31 components (27 properties)
- 60 materials (* 10 properties)

Ten international workshops to model the knowledge of experts.

Benefits:

- It empowers young engineers
- Designs are "right the first-time"
- Knowledge becomes a managed asset in a learning organization

Why now?

- SAT and SMT solvers can now solve previously intractable symbolic problems
- we have new understanding of the complexity and variety of knowledge
- we have new understanding of the various inferences required (beyond deduction)

Questions?

Hands-on tutorial in Gent on Monday, Feb 6, 13:30-16:30. (Google "vaia idp")

