How to deal with validation as an HPC software?

An approach to power software testing at scale

Julien Adam — julien.adam@paratools.com

FOSDEM'23 February 5th, 2023

- Back in 2012, from a team developing an MPI runtime
- Shell-script-only regression base
 - Highly dependent on test environments
- Maintenance was a costly task
 - When extending the validation process with new tools
 - When integrating even minor changes from the project

- A simple tool
 - Basically, a CLI & minimal configuration files
- Highly customizable tool
 - Test Scenarios may be complex
 - Adaptable to future tech without a complete rewriting
- See Also:
 - ReFrame
 - ◆ JuBE
 - Pavilion2

Parallel Computing Validation System

- Shorten as PCVS
- A CLI + YAML-based configuration files
- Testing framework designed to
 - Make test design portable
 - Retarget benchmarks for comparison
 - Autoscale benchmarks to test environments

- Split environment & test design
 - Test specifications are carried with projects/benchmarks
 - Environment are stored on clusters
- Adapt tests to new environments
 - Auto-retargeting tests to compilers/runtimes
 - Auto-scaling tests to exec environment
- Integrate tools for in-place reporting
- Stand-alone execution (=sessions)
- Simple format: YAML
- Store runs over time
- Run analysis to create trend/stats over time

PCVS Architecture

- Job descriptions expose resource requirements
- Environment provides resources
- \Rightarrow => the intersection constitutes the combinatory matrix
- Test workload depends on both these information

PCVS Architecture

- Job descriptions expose resource requirements
- Environment provides resources
- the intersection constitutes the combinatory matrix
- Test workload depends on both these information

Environment

How to write a compilation test

- Alongside with tests/benchmarks
- Static file: pcvs.yml
- Multiple build systems supported

How to write a run test

- Alongside with tests/benchmarks
- Static file: pcvs.yml
- Many validation triggers

How to write a run test

Now Run!

\$ pcvs profile create mympi --base mpi
\$ pcvs run --profile mympi _/MPI/IMB/check

- PCVS relies on a single output directory (defaults to \$PWD/.pcvs-build) containing:
 - Configurations
 - Build artefacts (programs, temp files...)
 - PCVS cache (pre-compiled python files)
 - JSON-formatted Results
 - Previous results run in the same directory (compressed)

```
MPI/
    BULL
    IMB
    Intel ANL
    mpich-3.4.2
   MPI-I0
    NAS
    NBC
    rma-mt
    simple
    Thread based
    Threading
OpenMP/
    BOTS
    CLOMP
    EPCC
    GOMP
    NAS
    OpenUH
    simple
applications/Corals/
    AMG2013
    graph500-2.1.4
    lulesh-2.0.3
    mcb-20130723
    miniFe
    nekbone-2.3.4
    UMT2013
```

OTHER

0

100.0%

pcvs exec IMB/MPI_Barrier_n2 [--show]

Para	100	S	

\$

0:14:54 Progress

Copyright © 2017 CEA

1	NITIALIZATION ——			
 Prepare environment Check whether build directory is valid Ensure user-defined programs exist Init & expand criterions Init the global Orchestrator Save Configurations into Load Test Suites Locate benchmarks from user directories Extract tests from dynamic definitions (1 f Extract tests from static definitions (0 fo 	ound) und)			
 Global Information Date of execution: Tue Jan 31 08:56:29 2023 Run by: Julien Adam <adamj@paratools.com></adamj@paratools.com> Active session ID: 19 Loaded profile: 'user.openmpi' Build stored to: Criterion matrix size per job: 4 Bank Management: mpi_repo@openmpi User directories: 	- SUMMARY			
 IMB: Globally loaded plugins: TEST_EVAL: MPIPlugin TEST_RESULT_EVAL: BankValidationPlugin Orchestration infos Test count: 293 Max simultaneous Sets: 10 Resource count: 10 				
Name	EXECUTION	SUCCESS	FAILURE	ERR
IMB		205	88	0

pcvs exec --list

Now Run!

PCVS can be executed in the background, detached from the current shell.

- Test results are packed when displayed for compactness
- I/O are managed thanks to rich

Goal: preserve benchmarks

- To ease the benchmark update process, no modifications should be applied directly to sources.
- Prepare/generate
 dynamically job descriptions
 - Run a script loading the run environment
 - Output the actual YAML script
 - * pcvs.setup

Need: review the results to get direct feedback

Ex: Quick rerun

Tests may be uniquely rerun in the same condition
 \$ pcvs exec IMB/MPI_Barrier_n2

- Tests may be GUI-reviewed (Flask Server)
 - From any build or generated archive
 - \$ pcvs report

Need: review the results to get direct feedback

Ex: Quick rerun

Tests may be uniquely rerun in the same condition * \$ pcvs exec IMB/MPI_Barrier_n2

- Tests may be GUI-reviewed (Flask Server) *
 - From any build or generated archive

\$ pcvs report Test Count Progress Name IMB 293 **ParaTools**

		Name	\$ status 🍦	Elapsed time (s)
	+	IMB/Ibarrier_args=Ibarrier_n1	SUCCESS	3.36
-	ŧ.	IMB/Unidir_Get_args=Unidir_Get_n1	SUCCESS	3.40
	ŧ.	IMB/Ibarrier_args=Ibarrier_n2	SUCCESS	3.55
-	ŧ.	IMB/Open_Close_args=Open_Close_n2	SUCCESS	3.67
-	ŧ.	IMB/S_Read_Indv_args=S_Read_Indv_n1	SUCCESS	3.71
	ŧ.	IMB/P_Read_Priv_args=P_Read_Priv_n1	SUCCESS	3.72
	ŧ.	IMB/P_Read_Expl_args=P_Read_Expl_n1	SUCCESS	3.75
	ŧ.	IMB/S_IWrite_Expl_args=S_IWrite_Expl_n1	FAILURE	3.75
-	ŧ.	IMB/C_Write_Expl_args=C_Write_Expl_n1	FAILURE	3.77
-	ŧ.	IMB/S_Write_Expl_args=S_Write_Expl_n2	FAILURE	3.80
•	ŧ.	IMB/P_IWrite_Priv_args=P_IWrite_Priv_n1	FAILURE	3.83
•	ŧ.	IMB/S_Read_Expl_args=S_Read_Expl_n1	SUCCESS	3.83
	ŧ.	IMB/S_Read_Expl_args=S_Read_Expl_n2	SUCCESS	3.97
	ŧ.	IMB/S_Read_Indv_args=S_Read_Indv_n2	SUCCESS	4.05
	ŧ.	IMB/Scatterv_args=Scatterv_n1	SUCCESS	4.07
ra	E00]	S FOSDEM'23 — February 5th, 2023		

IMB/S	_IWrite_Expl	_args=S_IWrite	e_Expl_n4
-------	--------------	----------------	-----------

				-		
Intel (R) MPI	[Benchmarks 20	17, MPI-IO pa 	rt 	-		
Date	: Tue Ja	n 31 09:00:38	2023			
Machine	: x86_64					
System	: Linux					
Release	: 4.18.0	-305.62.1.el8	_4.x86_64			
Version	: #1 SMP	Thu Aug 11 1	2:07:27 EDT 202	2		
MPI Version MPI Thread Envir	onment:					
MPI Version MPI Thread Envir Calling sequence	ronment: e was: /n	cvs-benchmark	s/.ncvs-build/t	est suite/IMB/IM	4B-TO S TWri	ite Expl
MPI Version MPI Thread Envir Calling sequence	ronment: e was: /p	cvs-benchmark	s/.pcvs-build/t	est_suite/IMB/IM	1B-IO S_IWri	ite_Expl
MPI Version MPI Thread Envir Calling sequence Minimum io porti	ronment: e was: /p ion in bytes:	cvs-benchmark 0	s/.pcvs-build/t	est_suite/IMB/IM	4B-IO S_IWri	ite_Expl
MPI Version MPI Thread Envir Calling sequence Minimum io porti Maximum io porti	ronment: e was: /p ion in bytes: ion in bytes:	cvs-benchmark 0 16777216	s/.pcvs-build/t	est_suite/IMB/IM	4B-IO S_IWri	ite_Expl

For nonblocking benchmarks:

Function CPU_Exploit obtains an undisturbed
performance of 2071.55 MFlops

е

Setup configuration for your site

- A profile, YAML-based, carries information relative to environment.
 - Nodes, resources, parameters...
- These profiles are stored under a scope for easy access (« a la Git »: global, user & local)
- Base profiles for common use cases are available
- Profiles may even be split up: Config blocks, composable from multiple environments sharing the same filesystem

compiler: commands: cc: mpicc, cxx: mpicxx, fc: mpif90 criterion: iterators: n_mpi: subtitle: n values: [1, 2, 3, 4] machine: concurrent_run: 4, cores_per_node: 4, name: localhost, nodes: 1 runtime: program: mpirun iterators: n_mpi: option: '-np '

A run and beyond

- More than a single run, PCVS store results under a « database »: banks
 - Simplified Git repository
 - Commit = a whole run
 - Branch = run series
- Highlight progression in software developments

Easy to use from third-party tools

▶ pcvs bank show demo

----- BANK VIEW ------

Projects contained in bank '/home/adamj/mnt/work/pcvs/demo.git':

- mpc : 2 distinct testsuite(s)
 - * mpc/d5d3468e3e9a8ec9bba9eb2885434292: 17 run(s)
 - * mpc/b6ffe2123be606eab75f75b7dec00eba7d943461: 100 run(s)
- test : 1 distinct testsuite(s)
 - * test/d5d3468e3e9a8ec9bba9eb2885434292: 2 run(s)
- master : 1 distinct testsuite(s)
 - * master: 0 run(s)
- myproject: 1 distinct testsuite(s)
 * myproject/d5d3468e3e9a8ec9bba9eb2885434292: 9 run(s)

```
ParaTools
```

```
A run and beyond
```

```
1 from pcvs.dsl import Bank
2 from pcvs.dsl.analysis import SimpleAnalysis
3 
4 bank = Bank('demo.git')
5 a = SimpleAnalysis(bank)
6 
7 l = bank.list_series()
8 data = a.generate_weighted_divergence(l[1].name)
9 data = a.generate_serie_trend(l[1].name)
```

- Per-run test results are relevant but not enough
 - Execution Noise (load, disks..)
 - Binary interpretation
- Analysing test results over multiple runs offer more depth to the « big picture ».
- PCVS provide a DSL to query banks about save runs.
 - Build trends to see the actual progression in development
 - Requalify job status by adding/recompute test results based on measurements.
- Multiple analyses are provided by PCVS
 - Custom can be inserted as plugins

Custom can be inserted as plugins

- PCVS is not a Spack package (yet)
- PCVS can interact with Spack in, three manners:
 - Install/load packages as deps
 - Validate Spack recipes according to variant matrix
 - Run any test-defined packages (=translating to « spack test »)

(pcvs) pcvs run --profile mpi --spack-recipe libfabric


```
Parallel Computing -- Validation System Copyright © 2017 -- CEA
```

	-	INITIALI	ZATION —			
	٠	Prepare environment				
		♦ Check whether build directory is v	alid			
		♦ Ensure user-defined programs exist				
		♦ Init & expand criterions				
		♦ Init the global Orchestrator				
in		♦ Save Configurations into				
	٠	Load Test Suites				
		♦ Build test-bases from Spack recipe	S			
	٠	===> Processing done in 0.428 sec(s)				
	-	SUMMA	RY			
	٠	Global Information				
		♦ Date of execution: Fri Feb 3 11:3	1:03 2023			
		♦ Run by: Julien Adam <adamj@paratoo< p=""></adamj@paratoo<>	ls.com>			
		♦ Active session ID: 231				
		♦ Loaded profile: 'user.mpi'				
		♦ Build stored to:				
		♦ Criterion matrix size per job: 1				
		♦ Bank Management: demo@project				
	٠	User directories:				
		♦ SPACK: /spack				
	٠	Globally loaded plugins:				
ЭS)	♦ TEST_EVAL: MPIPlugin				
		♦ TEST_RESULT_EVAL: BankValidationPl	ugin			
	٠	Orchestration infos				
)		♦ Test count: 72				
		♦ Max simultaneous Sets: 4				
		♦ Resource count: 1				
		EXECUT	ION			
		Name	SUCCESS	FATLURE	FRROR	OTHER
	-	Traine	JUCCEDU	TALEONE	ENNON	
		spack/libfabric	72	0	0	0

SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=gni kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=gni kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=gni kdreg=True spack/libfabric/libfabric_build_system=autotools_debug=True_fabrics=gni_kdreg=True SUCCESS SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=xpmem kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=xpmem kdreg=False SUCCESS spack/libfabric/libfabric_build_system=autotools_debug=False_fabrics=xpmem_kdreg=True SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=xpmem kdreg=True SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=efa kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=efa kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=efa kdreg=True SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=efa kdreg=True SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=opx kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=opx kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=opx kdreg=True SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=opx kdreg=True SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=mrail kdreg=False \Leftrightarrow SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=mrail kdreg=False SUCCESS spack/libfabric/libfabric_build_system=autotools_debug=False_fabrics=mrail_kdreg=True three success spack/libfabric/libfabric build system=autotools debug=True_fabrics=mrail_kdreg=True spack/libfabric/libfabric build system=autotools debug=False fabrics=psm2 kdreg=False spack/libfabric/libfabric build system=autotools debug=True_fabrics=psm2_kdreg=False SUCCESS SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=psm2 kdreg=True IN SUCCESS spack/libfabric/libfabric_build_system=autotools_debug=True_fabrics=psm2_kdreg=True SUCCESS spack/libfabric/libfabric_build_system=autotools_debug=False_fabrics=shm_kdreg=False V[€] SUCCESS spack/libfabric/libfabric build system=autotools debug=True_fabrics=shm_kdreg=False C SUCCESS spack/libfabric/libfabric build system=autotools debug=False_fabrics=shm_kdreg=True SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=shm kdreg=True a (success spack/libfabric/libfabric_build_system=autotools_debug=False_fabrics=sockets_kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=sockets kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=sockets kdreg=True RISUCCESS spack/libfabric/libfabric_build_system=autotools_debug=True_fabrics=sockets_kdreg=True SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=cxi kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=cxi kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=cxi kdreg=True SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=cxi kdreg=True SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=tcp kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=tcp kdreg=False ROR SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=tcp kdreg=True SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=tcp kdreg=True 0 SUCCESS spack/libfabric/libfabric build system=autotools debug=False fabrics=udp kdreg=False SUCCESS spack/libfabric/libfabric build system=autotools debug=True fabrics=udp kdreg=False

ParaTools

OTHER

0

- Scheduled
 - CLI-based GUI (through Textualize)
 - Allow auto-parametrization over compilation tests
 - Job packing into a single allocation
 - Capturing metrics
- ✤ Wishlist
 - Job workflow & visualization (conditional run path)
 - Third-party exporters (Prometheus, Graylog)
 - Better Spack CI/test integration
 - Spack & Easybuild support for deployment
 - Users & feedback :)

Thank you for your attention

- ✓ <u>https://pcvs.io/</u>
- ✓ <u>https://pcvs.readthedocs.io/</u>
- ✓ <u>https://github.com/cea-hpc/pcvs</u>
- ✓ julien.adam@paratools.com

