
Introducing Helios
A small, practical microkernel

Drew DeVault
SourceHut

January 25, 2023

1 / 31

Introduction

• Hi

• I’m Drew DeVault

• Project lead for Hare

• Other stuff too

• Moving swiftly along

https://ares-os.org

https://harelang.org

https://drewdevault.com

2 / 31

https://ares-os.org
https://harelang.org
https://drewdevault.com

What is Helios?

Helios is a microkernel, largely inspired by seL4. It is written in Hare and runs on x86 64
and aarch64; RISC-V is planned.

• ≈ 8,500 lines of portable code

• ≈ 3,000 lines non-portable per architecture

• GPL 3.0

Note: Line counts do not include the bootloaders

3 / 31

What is Helios, continued

What works?

• Capability-based security

• IPC (similar to seL4)

• Preemptive scheduling (single core, no SMP)

• Hardware I/O (ports or mmio), IRQs

• EFI (aarch64) or multiboot (x86 64)

4 / 31

Why is Helios?

• Kernel hacking is really fun

• Prove if Hare is useful for this purpose

• Can we do better than seL4?

• Can we do better than, dare I suggest, Linux?

5 / 31

A brief introduction to Hare

Hare is a systems programming language designed to be simple, stable, and robust. Hare
uses a static type system, manual memory management, and a minimal runtime. It is
well-suited to writing operating systems, system tools, compilers, networking software,
and other low-level, high performance tasks.

6 / 31

A brief introduction to Hare

• General purpose systems programming language

• 3 years in development

• 18,000 line compiler (C11)

• 12,000 line backend (C99)

• x86 64, aarch64, riscv64

7 / 31

What does Hare look like?

export @noreturn fn kmain(ctx: arch::bootctx) void = {

log::printfln("Booting Helios kernel");

const pages = init::pages(&ctx);

let heap = init::heap_init(&ctx, pages);

let task = init::task_init(&heap, ctx.argv);

init::load(&task, &ctx.mods[0]);

init::heap_finalize(&task, &heap, &ctx);

init::devmem_init(&task);

init::finalize(&task);

log::printfln("Entering userspace");

sched::init();

sched::enteruser(task.task);

};

8 / 31

The design of Helios

Let’s go over the main talking points about its design:

• Capabilities

• Memory management

• Address spaces & tasks

• IPC

And implementation:

• Bootloader

• System initialization

• Runtime API

9 / 31

Design: the big picture

1. Access to all system resources is governed by capabilities, including memory, page
tables, MMIO, IRQs, threads, address spaces, and so on

2. Semantic ownership over these resources belongs to userspace; all resources are
enumerated on startup and handed over to “pid 1”

3. Further usage of these resources is subject to userspace policy, and this policy is
enforced by the kernel via the MMU (or IOMMU*)

* Eventually

10 / 31

Capabilities in practice

Physical memory

0x0000 CSpace
0x0100 VSpace
0x0200 Task
0x0300 Page(s)

... ...
0x0800 Free memory

... ...
0x1000 MMIO

... ...
0xFFFF (end)

// CSpace state

type cspace = struct {

slots: [*]caps::cslot,

};

// Task cslot (in CSpace)

type task = struct {

state: *taskstate,

};

// Task state (in Task page)

type taskstate = struct {

regs: struct {

rax: u64,

rbx: u64,

// ...

},

};
11 / 31

Capability enforcement

Physical memory

0x0000 CSpace
0x0100 VSpace
0x0200 Task
0x0300 Page(s)

... ...
0x0800 Free memory

... ...
0x1000 MMIO

... ...
0xFFFF (end)

Virtual memory

0x8000 Page @ 0x0300

0x8100 Page @ 0x0400

0x8200 Page @ 0x0500

0x8300 Page @ 0x0600

0x8400 Page @ 0x0700

0x9000 MMIO @ 0x1000

... ...

This process:

• Can map page capabilities into its
VSpace

• Can invoke other capabilities indirectly
via kernel

12 / 31

Capability invocation

Helios has 14 syscalls, 12 of which work with capabilities:

• SYS writecons

• SYS yield

• SYS identify

• SYS send

• SYS recv

• SYS call

• SYS reply

• SYS signal

• SYS wait

• SYS nbsend

• SYS nbrecv

• SYS nbwait

• SYS poll

• SYS pollx

13 / 31

Capability invocation

// Syscall number

mov %rax, $SYS_call

// VSpace capability address

mov %rdi, $0x1234

// Page capability address

mov ipc_buffer, $0x4321

// IPC message details

mov %rsi, $(VSPACE_MAP | (1 << NCAP) | (2 << NPARAM))

// Virtual address

mov %rdx, $0x8000000

// Mapping flags

mov %r10, $(MAP_RW | MAP_NOCACHE)

// Perform syscall

syscall

VSpace::map{page}(virtual address, flags)

Maps a page in a given VSpace at the
desired virtual address, with the provided
mapping flags.

14 / 31

Generalizing capabilities with IPC

Endpoint capabilities facilitate a generalized form of IPC.

• Sends registers and/or capabilities between tasks

• Synchronous: send and recv both block, wait for rendezvous

• Multiple senders/receivers: whoever’s blocked the longest wakes up

• seL4-style call/reply supported

15 / 31

Endpoints for IPC in practice

Task 1

1. Prepares a message
2. Invokes SYS call

3. Sees task 2 blocked on recv
4. Copies registers from task 1 → task 2
5. Unblocks task 2
6. Blocks task 1 pending reply

...

...

...

...
11. Returns from syscall
12. GOTO 1

Task 2

1. Invokes SYS recv and is blocked
...
...
...
...

6. Return from syscall
7. Processes IPC request, preps reply
8. Invokes SYS reply

9. Copies reply registers
10. Unblocks task 1
11. Returns from syscall
12. GOTO 1

16 / 31

IPC: Poll

let poll: [_]pollcap = [

pollcap { cap = IRQ, events = pollflags::RECV },

pollcap { cap = EP, events = pollflags::RECV },

];

for (true) {

helios::poll(poll)!;

if (poll[0].events & pollflags::RECV != 0) {

poll_irq();

};

if (poll[1].events & pollflags::RECV != 0) {

poll_endpoint();

};

};

17 / 31

A uniform interface

As far as userspace is concerned, talking to another process and talking to the kernel are
indistinguishable. All kernel objects behave like endpoints when invoked.

18 / 31

Capabilities

CSpace

0x00 Memory
0x01 Device memory
0x02 Task
0x03 I/O port
0x04 IRQ
0x05 null (link 0x06)
0x06 null (link 0x07)
0x07 null (link ...)

...
0xFF (null)

• Each task (process) has a CSpace

• Configurable number of capabilities

• Stores small amount of state

• Most state generally stored elsewhere

Similar to seL4, but:

• Not a guarded page table

• Free list for O(1) capalloc in kernel

19 / 31

Capabilities

• Null
• Memory
• Device memory
• Capability space
• Virtual address space
• Task
• Endpoint
• Notification
• Reply
• ASID control
• ASID pool

Plus, on x86 64:

• PDPT

• PD

• PT

• Page

• I/O control

• I/O port

• IRQ control

• IRQ handler

20 / 31

Memory management

• Different from seL4: Free list instead of high watermark

• It’s not that interesting

• This slide only exists to mention the seL4 thing

• But I feel the need to fill in some of this whitespace

• You just lost the game

21 / 31

Address spaces

VSpace capabilities (like seL4) are capabilities that manage address spaces. Pages can be
shared, but not page tables, at least until we know why seL4 doesn’t let you share page
tables so we can stop cargo-culting that constraint.

22 / 31

Tasks

Tasks have a CSpace (optional) and VSpace and receive CPU time when configured
appropriately. Simple round-robin scheduler for now; more sophisticated later.

23 / 31

Booting Helios

The kernel itself is just an ELF executable, simple as can be. The bootloader’s job is to
load it, collect information about the environment, and hand it over to the kernel.

Supported: Multiboot on x86 64, EFI on aarch64; soon: EFI everywhere

The bootloaders are also written in Hare!

24 / 31

System initialization

• Load init from ELF executable

• Prepare capabilities for all system resources, hand them over to init

• Try not to fuck up memory while you’re at it

• Uses simple PCI driver (x86 64) or device tree (aarch64) to enumerate resources

• Please no ACPI please stop adding it to RISC-V please please please

• Jump to userspace

25 / 31

Userspace

Plans:

• Helios: Kernel

• Mercury: Driver framework

• Venus: Driver collection

• Gaia: Userspace interface

• Luna: POSIX compatibility layer

• Ares: Complete operating system

26 / 31

ipcgen

Defines the interface for a serial device.

interface serial :: io::iodev {

Returns the configured baud rate in hertz.

call get_baud() uint;

Returns the configured number of stop bits.

call get_stopbits() stop_bits;

Returns the configured parity setting.

call get_parity() parity;

Sets the baud rate for this serial device.

call set_baud(hz: uint) (void | errors::unsupported);

Configures the number of stop bits to use.

call set_stopbits(bits: stop_bits) void;

Configures the desired parity.

call set_parity(parity: parity) void;

};
27 / 31

Does it work?

I am using Helios to present this slide deck.

• Ported system to aarch64 over the last eight weeks(!)

• Simple GPU driver in userspace

• Serial port to switch slides/etc (USB in eight weeks? hah!)

• Slide deck is QOI files in a tarball functioning as the initramfs

• Few hacks or shortcuts!

28 / 31

What’s next?

The kernel is mostly ”done”. Still needs:

• Polish

• About 100 // TODOs

• SMP support

• riscv64 port

• More bootloader options

• Better docs

Next: userspace, drivers, and more!

29 / 31

Acknowledgements

Shoutout to early Hare kernel attempts from Ember Sawady and Alexey Yerin!

Big thanks to the Hare community as well: almost 80 contributors!

The #osdev community on Libera Chat is GOAT.

We stole a bunch of ideas from seL4, too.

Big thanks to @lukas@chaos.social for the timely Raspberry Pi replacement!

30 / 31

Closing thoughts

Kernel hacking is fun! Hare is fun! Let’s all have fun together!

https://ares-os.org

https://sr.ht/~sircmpwn/helios

https://harelang.org

Join us: #helios on Libera Chat

31 / 31

https://ares-os.org
https://sr.ht/~sircmpwn/helios
https://harelang.org

