On the path of better interoperability with Rust!
https://github.com /yvan-sraka/hs-bindgen

https://functional.cafe/@yvan



Context

At IOG we maintain large Haskell codebases and we would like to
interface them with some libraries written in Rust.



Why FFI (Foreign Function Interface)?

Solving the interoperability problem means:

1. designing a protocol that allows two codes written with
different languages and using different runtime systems to
communicate ;

2. designing tools and methods to build, to bundle, and to
distribute such polyglot code bases (what developers fear
most).

As our main criterion is performance, we want a solution with a
minimal overhead. In particular, we want to avoid the use of any
solution that relies on syscalls (like 1/Os) and on costly data
(de)serialization.

FFI looks like the right choice: no syscall, a foreign function call
just behaves as a jump in memory.



Rust ecosystem of integration with other PL

So, what's lacking in Haskell ecosystem? Let's take a look at what
kind of integration other languages offer with Rust:

® From C to Rust rust-bindgen ;

® From Rust to C c-bindgen and Rust to ECMAScript,
wasm-bindgen ;

® Both from and to Rust with C4++ cxx and Python Py03.

This list isn't exhaustive but give you a hint, all these projects are
about generating bindings (bindgen)!



Why bindgen (bindings code generation)?

’

Let's sum it up by: “A good FFl is an FFI that you don't write ...’

FFI are like a blind spot in your type system. Writing them
manually is both frankly painful and really dangerous, as your
compiler will not warn you about non-matching interfaces.

Binding generation comes to the rescue by considerably reducing
the room for human errors. As a bonus, it also makes maintainers’
life easier thanks to a smaller and more readable code base.



A minimal example ...

//! src/main.rs in a “greetings’ crate
use hs_bindgen: :*;
#[hs_bindgen(hello :: CString -> I0 ())]

fn hello(name: &str) {
println! ("Hello, {namel}!");



.. after Rust macro expansion:

use hs_bindgen: : *;

fn hello(name: &str) {
println! ("Hello, {name}!");

#[no_mangle]l // Mangling makes symbol mames more difficult
// to predict. We disable it to ensure that
// the resulting symbol is really ~__c_hello”
extern "C" fn __c_hello(__0: *comnst core::ffi::c_char) {
// “traits® module is “hs-bindgen::hs-bindgen-traits’
// n.b. do not forget to import it, e.g., with:
// use hs-bindgen: :*
traits::ReprC: :from(
hello(traits::ReprRust::from(__0))



Why use C ABI (Application Binary Interface)?

First, GHC currently doesn't know anything about Rust calling
convention, while it does about C's one: C’s calling convention is
the lingua franca of rustc/ghc.

Additionally, the Rust ABI (call-convention and types memory
layout) isn't stable. That means that it's specified internally but
could be broken by any rustc minor release, building a software
on top of it is by definition a “hack” .. If we think it's worth it, we
would have to perform our bindgen against a given rustc version
(and that would be really laborious to maintain). So, do not fear
the C ABI because, at least, it is stable!



Why implement bindgen as a Rust macro?

Binding code generation could have been achieved using an
external tool, e.g., cbindgen parses Rust code (before macro
expansion) and deduces C function signatures.

But instead we decided to define a custom macro (like cxx,
wasm-bindgen, and Py03 do), and so we require the user to
depend on a custom crate.

The reason is that we want generated bindings to always match
the source code used for their generation. By using a macro we
enforce binding generation during the build process and bindings
can't get out-of-sync.



Haskell code generated:

-— This file was generated by "hs-bindgen” crate and
-— contains C FFI bindings wrappers for every Rust
-- function annotated with “#[hs_bindgen]"

{-# LANGUAGE ForeignFunctionInterface #-}

module

import
import
import
import
import

Greetings (hello) where

Data.Int
Data.Word
Foreign.C.String
Foreign.C.Types
Foreign.Ptr

foreign import ccall safe "__c_hello"
hello :: CString -> I0 (O



.. (re)look at Rust code expansed:

use hs_bindgen: : *;

fn hello(name: &str) {
println! ("Hello, {name}!");

#[no_mangle]l // Mangling makes symbol mames more difficult
// to predict. We disable it to ensure that
// the resulting symbol is really ~__c_hello”
extern "C" fn __c_hello(__0: *comnst core::ffi::c_char) {
// “traits® module is “hs-bindgen::hs-bindgen-traits’
// n.b. do not forget to import it, e.g., with:
/7 use hs-bindgen: :*
traits::ReprC: :from(
hello(traits::ReprRust::from(__0))



Traits! (Rust typeclasses)

Wrapping user types by these traits have several benefits:

® Unsupported types are nicely reported as “the trait
ReprRust<T> is not implemented for U” error (that suggest
other types that the trait implement to the user);

® The user can extensively always implement these traits for
arbitrary types ;

® Provided traits implementation for std types take care of
memory management ;

® Traits improve a lot of ergonomics by implicitly and safely
casting a given type to an FFl-safe one.



Digression on memory management and GC

The memory management strategy is freeing the value is the role
of the receiver (which has “ownership” of it). This means that
values returned by Rust functions aren’t dropped by Rust but
rather should be freed on the Haskell side!

hs-bindgen generates safe Haskell foreign imports by default!
You can still generate unsafe bindings simply by prefixing a
function name like #[hs_bindgen(unsafe NAME :: TYPE)] in
Rust attribute macro. !

To go further read “FFI safety and GC" by Fraser Tweedale or GHC's users
guide to understand the differences between Haskell unsafe/safe keywords.



Developer experience

cargo-cabal? is a CLI tool that helps you, in one simple
command, turn a Rust crate into a Haskell Cabal library!

What cargo-cabal actually does is:

® Ask the user to add crate-type = ["staticlib"] (or
"cdylib", dynamic libraries require an extra build.rs file
that is generated by cargo-cabal) to their Cargo.toml file;

® Generate a custom X.cabal linking rustc output as
extra-librairies, and either a (naersk and haskell.nix
based) flake.nix or a Setup.lhs.

Zhttps://github.com /yvan-sraka/cargo-cabal



What's next?

RFCs:
® Build Drivers for cabal® :

® Experimental feature gate proposal interoperable_abi®.

3https://github.com/haskell /cabal /issues/7906
*https://github.com/rust-lang/rust/pull /105586



Q/A



	Q/A

