
Bringing RISC‐V to Guix’s bootstrap
What’s done and what we need to do

Ekaitz Zárraga



Who I am

• Telecommunication engineer (EEE equivalent)

• Freelance engineer/programmer at ElenQ.Tech1

• Guix user and contributor

• You might remember me from my talk last year: “A year of
RISC‐V adventures: embracing chaos in your software journey”

1https://elenq.tech

https://elenq.tech


Intro

• Last year I asked NlNet for a grant2.

• I wanted to push the bootstrapping effort for RISC‐V, and
they funded me to do so.

• In this talk I’m going to introduce what I did3, what I think
it’s more or less done and what’s missing.

2https://nlnet.nl/project/GNUMes‐RISCV/index.html
3Read the longer version here:

https://ekaitz.elenq.tech/tag/bootstrapping‐gcc‐in‐risc‐v.html

https://nlnet.nl/project/GNUMes-RISCV/index.html
https://ekaitz.elenq.tech/tag/bootstrapping-gcc-in-risc-v.html


Intro to bootstrapping



Free software is not enough

We love Free Software because it helps us audit our programs.

But do we know if the source code we read actually maps to the
binary we are executing? Not really



Reproducibility

The relation is one‐way: the compiler is in the middle

In Guix we have reproducibility, so we can make sure some
inputs (the source, the compiler and the environment where it
runs) always produce the same outputs.

We can challenge the binaries, so nobody will give us a
malicious binary.



Trusting trust

But what if the bad actor is not a person but a program?



Trusting trust

But what if the bad actor is not a person but a program?

Reproducibility here will only make sure we generate the same
corrupt binary.

This kind of attack can be done in real life4.

4https://niconiconi.neocities.org/posts/
ken‐thompson‐really‐did‐launch‐his‐trusting‐trust‐trojan‐attack‐in‐real‐life/

https://niconiconi.neocities.org/posts/ken-thompson-really-did-launch-his-trusting-trust-trojan-attack-in-real-life/
https://niconiconi.neocities.org/posts/ken-thompson-really-did-launch-his-trusting-trust-trojan-attack-in-real-life/


Recursive problem, recursive solution

The compiler is a program too. This issue is recursive: a corrupt
compiler could corrupt it’s output compiler!

What’s the exit point?



Recursive problem, recursive solution

What’s the exit point?

If we could have a compiler that we can make sure its output is
not corrupt (but how?), we could make sure all the chain is
correct.



In practice

GNU+Linux distributions often rely in many prebuilt binaries:
Bash, GCC, Coreutils, Python…

Some distributions like Guix are interested on reducing the
amount of binaries they have to trust.

We can compile most of The World from source using a
powerful compiler (GCC FTW). But we can’t use a pre‐built
compiler (remember the previous slides?)

The key: Who is compiling the compiler?



In practice ‐ II

Let’s try with GCC:

0 The World (requires a modern GCC)

1 Modern GCC (requires ISO C++11 compiler)



In practice ‐ II

Let’s try with GCC:

0 The World (requires a modern GCC)

1 Modern GCC (requires ISO C++11 compiler)

2 GCC 11 (requires ISO C++98 compiler)



In practice ‐ II

Let’s try with GCC:

0 The World (requires a modern GCC)

1 Modern GCC (requires ISO C++11 compiler)

2 GCC 11 (requires ISO C++98 compiler)

3 GCC 4.8 (requires ISO C89 compiler)



In practice ‐ II

Let’s try with GCC:

0 The World (requires a modern GCC)

1 Modern GCC (requires ISO C++11 compiler)

2 GCC 11 (requires ISO C++98 compiler)

3 GCC 4.8 (requires ISO C89 compiler)

4 GCC 3.4 (requires K&R compiler)



In practice ‐ II

Let’s try with GCC:

0 The World (requires a modern GCC)

1 Modern GCC (requires ISO C++11 compiler)

2 GCC 11 (requires ISO C++98 compiler)

3 GCC 4.8 (requires ISO C89 compiler)

4 GCC 3.4 (requires K&R compiler)

5 …



In practice ‐ II

Let’s try with GCC:

0 The World (requires a modern GCC)

1 Modern GCC (requires ISO C++11 compiler)

2 GCC 11 (requires ISO C++98 compiler)

3 GCC 4.8 (requires ISO C89 compiler)

4 GCC 3.4 (requires K&R compiler)

5 …

I didn’t mention libraries here, that’s also a lot of fun



Guix’s bootstrapping

0 The World

1 Modern GCC

2 GCC 7.5

3 GCC 4.6.4

4 GCC 2.95

5 TinyCC
• Bootstrappable TinyCC

6 GNU Mes

7 Stage0‐POSIX => SOURCE CODE



GNU Mes

GNUMes is a Scheme interpreter and C compiler for boot‐
strapping the GNU System. Since version 0.22 it has again
helped to halve the size of opaque, uninspectable binary
seeds that are currently being used in the Further Reduced
Binary Seed bootstrap of GNU Guix. The final goal is to
help create a full‐source bootstrap as part of the boot‐
strappable builds effort for UNIX‐like operating systems.
The Scheme interpreter is written in ~5,000 LOC of sim‐
ple C, and the C compiler written in Scheme and these are
mutual self‐hosting. Mes can now be bootstrapped from
M2‐Planet and Mescc‐Tools.

https://www.gnu.org/software/mes/

https://www.gnu.org/software/mes/


Stage0‐POSIX

It bootstraps all these from a single 256 byte seed (which
you will find in the folder bootstrap‐seeds). The ultimate
goal is for this to bootstrap all the way up to GCC.
There is only one “missing” part that is not bootstrappable
from the hex0 seed: a kernel. This issue is not yet solved
and at the moment the kernel is trusted.

https://github.com/oriansj/stage0‐posix

https://github.com/oriansj/stage0-posix


Boostrapping ‐ wrapping up



RISC‐V support



Guix’s bootstrapping ‐ RISC‐V support

0 The World

1 Modern GCC

2 GCC 7.5

3 GCC 4.6.4

4 GCC 2.95

5 TinyCC
• Bootstrappable TinyCC

6 GNU Mes

7 Stage0‐POSIX

• N/A

• YES

• YES

• NO

• NO

• YES
• NO

• PARTIAL

• YES



Guix’s bootstrapping ‐ RISC‐V support SPOILER

0 The World

1 Modern GCC

2 GCC 7.5

3 GCC 4.6.4

4 GCC 2.95

5 TinyCC
• Bootstrappable TinyCC

6 GNU Mes

7 Stage0‐POSIX

• N/A

• YES

• YES

• NO I backported this

• NOWe will remove it

• YES
• NO I backported this

• PARTIAL

• YES I made some of this



What I did



GCC
GCC uses a Davidson‐Fraser model. Meaning that it uses an
intermediate language that is machine dependant: RTL (Register
Transfer Language).

HLL -> GIMPLE -> RTL -> OPTIMIZATIONS -> RTL -> ASSEMBLY

GCC is only a coordinator: it calls as and ld from binutils as the
assembler and linker.

• GIMPLE -> RTL: is done using identifiers. The GIMPLE
nodes match insn identifiers.

• RTL -> OPTIMIZATIONS: RTL matches the RTL templates
we write in the backend part of GCC. Those can be
expanded to other RTL expressions.

• RTL -> ASSEMBLY: The expanded RTL expressions are
matched against RTL templates that also describe their
equivalent in assembly and assembly is generated from
them.



GCC
RTL templates are written in LISP in machine descriptor files
(*.md), they look like this:

(define_insn
"adddi3" ;; Identifier

;; The behavior of the instruction
[(set (match_operand:DI 0 "register_operand" "=r,r")

(plus:DI (match_operand:DI 1 "register_operand" "r,r")
(match_operand:DI 2 "arith_operand" "r,I")))

]

"TARGET_64BIT" ;; Predicate to test
"add\t%0,%1,%2" ;; Assembly output template

;; Attributes
[(set_attr "type" "arith")
(set_attr "mode" "DI")])



GCC

Apart from that GCC needs tons of other definitions in order to
get another target:

• Target description macros and functions

• Libraries like libgcc and many others



GCC ‐ What I did
Cherry picked the RISC‐V support from GCC 7.5 to GCC 4.6.4

1 There were missing insns => Used older ones that were
equivalent.

2 Some RTL constructs (int_iterator) didn’t exist in 4.6.4
=> Expanded the iterator by hand.

3 There were missing predicates => Copied them.

4 The internal GCC API moved from C to C++ in the
meantime => I had to convert the code from using a class to
the older interface.

5 Memory barriers didn’t exist back then => Always introduce
a fence to make sure code is correct.

6 libgcc is a mess => Play around until it works

TL;DR: Touch everything until it works.



GCC ‐ What I did

Finally I managed to make a GCC 4.6.4 that is able to generate
RISC‐V binary.

See the blog for a more detailed description of the changes:

• https://ekaitz.elenq.tech/bootstrapGcc3.html

• https://ekaitz.elenq.tech/bootstrapGcc4.html

https://ekaitz.elenq.tech/bootstrapGcc3.html
https://ekaitz.elenq.tech/bootstrapGcc4.html


Bootstrappable TinyCC

TinyCC has RISC‐V support but it’s not boostrappable using
GNU Mes.

The bootstrappable fork of TinyCC GNU Mes uses is old =>
Backport again.



Bootstrappable TinyCC ‐ What I did

Copy the relevant files from the upstream TinyCC and:

0 Prepare a reproducible way to build the Bootstrappable
TinyCC.

1 Just read the code and make it match.
SURPRISE: The code is really hard to read… But I eventually
managed to make it work.

2 Some core code was needed for the backend to work =>
Remove it! It was only some optimization code!

More detailed description of the changes:

• https://ekaitz.elenq.tech/bootstrapGcc6.html

https://ekaitz.elenq.tech/bootstrapGcc6.html


Bootstrappable TinyCC ‐ What I did
OPTIMIZED VERSION

0000000000000000 <main>:
0: fd010113 addi sp,sp,-48
4: 02113423 sd ra,40(sp)
8: 02813023 sd s0,32(sp)
c: 03010413 addi s0,sp,48

10: 00000013 nop
14: fea43423 sd a0,-24(s0)
18: feb43023 sd a1,-32(s0)
1c: 0130051b addiw a0,zero,19
20: fca42e23 sw a0,-36(s0)
24: 05a0051b addiw a0,zero,90
28: fca42c23 sw a0,-40(s0)
2c: fdc42503 lw a0,-36(s0)
30: 00051463 bnez a0,38 <main+0x38>
34: 0180006f j 4c <main+0x4c>
38: fd842503 lw a0,-40(s0)
3c: 00051463 bnez a0,44 <main+0x44>
40: 00c0006f j 4c <main+0x4c>
44: 0010051b addiw a0,zero,1
48: 0100006f j 58 <main+0x58>
4c: 00008537 lui a0,0x8
50: 7005051b addiw a0,a0,1792
54: 00000033 add zero,zero,zero
58: 02813083 ld ra,40(sp)
5c: 02013403 ld s0,32(sp)
60: 03010113 addi sp,sp,48
64: 00008067 ret

UNOPTIMIZED VERSION

0000000000000000 <main>:
0: fd010113 addi sp,sp,-48
4: 02113423 sd ra,40(sp)
8: 02813023 sd s0,32(sp)
c: 03010413 addi s0,sp,48

10: 00000013 nop
14: fea43423 sd a0,-24(s0)
18: feb43023 sd a1,-32(s0)
1c: 0130051b addiw a0,zero,19
20: fca42e23 sw a0,-36(s0)
24: 05a0051b addiw a0,zero,90
28: fca42c23 sw a0,-40(s0)
2c: fdc42503 lw a0,-36(s0)
30: 00051463 bnez a0,38 <main+0x38>
34: 01c0006f j 50 <main+0x50>
38: fd842503 lw a0,-40(s0)
3c: 00051463 bnez a0,44 <main+0x44>
40: 0100006f j 50 <main+0x50>
44: 0010051b addiw a0,zero,1
48: 0140006f j 5c <main+0x5c>
4c: 0100006f j 5c <main+0x5c>
50: 00008537 lui a0,0x8
54: 7005051b addiw a0,a0,1792
58: 00000033 add zero,zero,zero
5c: 02813083 ld ra,40(sp)
60: 02013403 ld s0,32(sp)
64: 03010113 addi sp,sp,48
68: 00008067 ret



What needs to be done



GCC ‐ What needs to be done

• Properly package the GCC‐4.6.4 to include C++ support,
and fix all the libraries that might be missing.

• Build the backported GCC‐4.6.4 using TinyCC

• Build GCC‐7.5 using the backported GCC‐4.6.4



TinyCC ‐ What needs to be done

• Build the bootstrappable TinyCC using GNU Mes

• Decide if we need the upstream TinyCC to build GCC or not
• If we do: build the upstream TinyCC with the
bootstrappable TinyCC



GNU Mes ‐ What needs to be done

• Review the current RISC‐V support and prepare it to be
merged



Guix ‐ What needs to be done

• Describe the whole compiler compiler chain in the
bootstrapping packages so everyone can benefit from it



Extra

Do it all in real hardware



Last words



Last words

There’s still a lot of work to be done, most of it being the
integration of the work I already did in the past thanks to NlNet.

The future is bright though. We are probably going to get more
funds from NlNet to involve more people on this.

Wanna join?



Contact and take part

• Email me: ekaitz@elenq.tech5

• Relevant IRC channels: #bootstrappable, #guix,
#guix-risc-v

5mailto:ekaitz@elenq.tech

mailto:ekaitz@elenq.tech


Thank you


	Intro to bootstrapping
	RISC-V support
	What I did
	What needs to be done
	Last words
	Thank you

