
Reconciliation Pattern, Control Theory and Cluster API:
The Holy Trinity

Sachin Kumar Singh

$ whoami

• Work @ Canonical (Kubernetes, MicroK8s)

• Previously worked @ VMware, working on Cluster API BYOH and upstream stuff.

• Interested in distributed systems and Cloud Native technologies.

Agenda

• First Principles: Control Theory and PID controllers (L0)

• Reconciliation Patterns in Kubernetes (L1)

• Extending Reconciliation Patterns (L2)

• Incorporating Reconciliation Patterns in Cluster API (L3)

• Demo: Cluster API MicroK8s provider

A simple example to understand controllers in real life..

A few terms

• The entity that we want to control - System

• The desired state - Set Point (SP)

• The observed state - Process Variable (PV)

• How “far” are we currently from our desired state? - Error (e)

• Who drives the system to where it needs to be? - Controller

However, things don’t often change fast and precisely. There’s a delay/lag when controller
changes the state of the system.

So a more ideal controller would be able to account for the following:

• Undershooting or Overshooting SV.

• Compensation for large adjustments based on past experiences.

• Prediction of the future errors based on the current error.

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-api-machinery/controllers.md

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-api-machinery/controllers.md

Custom Resource Definition (CRD)

All these components in management cluster are custom resource managed by their

respective controllers.

• Cluster API: Provides CAPI specific CRDs like Machines, MachineSets, Cluster etc.

• Bootstrap Provider: Turns a VM/server into a K8s node.

• Control Plane Provider: Serves the Kubernetes API and continuously reconciles desired

state using reconciller loops.

• Infrastructure Provider: Provisions infrastructure/computational resources required

by the Cluster or by Machines.

Interlude: MicroK8s

MicroK8s is a lightweight Kubernetes distribution that is designed to run on local systems.

• Automatic, autonomous and self-healing High Availability (HA).

• Comes with sensible defaults for the most widely used Kubernetes options.

• Batteries included (bring your own addons).

• CNCF certified.

Pre-demo-requisites

Cluster API bootstrap provider MicroK8s: Responsible for generating a cloud-init script to

turn a Machine into a Kubernetes Node. This implementation uses MicroK8s for Kubernetes

bootstrap.

Cluster API control plane provider MicroK8s: Responsible for managing the control plane

of the provisioned clusters using MicroK8s.

Cluster API infrastructure provider OpenStack: Responsible for provisioning OpenStack

VMs for clusters and nodes.

Time for a Demo

References and Resources

• Cluster API book

• Control Theory in Container Fleet Management

• Control Theory is Dope

• Close Loops & Opening Minds: How to Take Control of

Systems, Big & Small

• Controller Architecture Kubernetes docs

• Kubebuilder Book

• MicroK8s Bootstrap provider docs

• MicroK8s official docs

• Control Theory, Controllers and Kubernetes: The

Holy Trinity

https://cluster-api.sigs.k8s.io/introduction.html
https://www.infoq.com/presentations/controllers-observing-systems/
https://gianarb.it/blog/control-theory-is-dope
https://www.youtube.com/watch?v=O8xLxNje30M
https://www.youtube.com/watch?v=O8xLxNje30M
https://kubernetes.io/docs/concepts/architecture/controller/
https://book.kubebuilder.io/
https://cluster-api.sigs.k8s.io/tasks/bootstrap/microk8s-bootstrap.html
https://microk8s.io/docs
https://www.youtube.com/watch?v=VO59WrP0OzA
https://www.youtube.com/watch?v=VO59WrP0OzA

Thank you!

Twitter: @sachin_singh092

GitHub: @sachinkumarsingh092

K8s slack: @sachinkumarsingh092 (#microk8s)

