@ Coralogix

| Optimizing string usage in Go programs

Matej Gera

04.02.2023
FOSDEM 2023

Introduction

e Matej Gera
e Software Engineer @ Coralogix
e Maintainer @ Thanos

o GitHub: @matej-g
e Twitter: @gmat90

@ Coralogix

https://coralogix.com/
https://thanos.io/
https://github.com/matej-g
https://twitter.com/gmat90

Three things today

e Understanding Go strings behind the scenes
e String use cases prone to performance bottlenecks

e Optimization strategies

@ Coralogix

Inspiration behind this talk

e (Data-driven) performance optimization

o Working on Thanos project (distributed time-series database)

Thanos

Open source, highly available Prometheus setup with long term
storage capabilities.

@ Coralogix

https://thanos.io/

Inspiration behind this talk

e (Data-driven) performance optimization

o Don’t miss talk from Bartek Plotka today!

FOSDEM 2023 / Schedule / Events / Developer rooms / Go / Five Steps to Make Your Go Code Faster & More Efficient

Five Steps to Make Your Go Code Faster & More
Efficient

A Track: Go devroom
A Room: UD2.218A
@ Day: Saturday

p Start: 15:00

W End: 15:30

m Video with Q&A: We've hit a snag. The Video only link {
B Video only: We're not quite ready yet

¥ Chat: We've hit a snag. The Video only link still works!

@ Coralogix

https://fosdem.org/2023/schedule/event/gofivestepsefficient/

Inspiration behind this talk

e Focus on strings

@ Coralogix

Inspiration behind this talk

e Focus on strings

Top consumers

aples
17%

- Source: PromCon EU 2022: Why Is It so Big? Analysing the Memory
Consumption of Prometheus by Bryan Boreham

@ Coralogix

https://www.youtube.com/watch?v=vc5LgoiP_CA
https://www.youtube.com/watch?v=vc5LgoiP_CA

Strings behind the scene
e Immutable, can be converted to []byte, concatenable, slicable...
e But strings are not “just” strings

e Runtime representation of strings (/src/runtime/string.go):

type stringStruct struct type StringHeader struct
len int => Len 1int

} }

@ Coralogix

https://go.dev/src/runtime/string.go

Strings behind the scene

e In actuality, it’s slice of bytes
e Size stays the same during lifetime (remember, immutable)
e Size of string will correspond to

o String header overhead (16 bytes) + actual string (length of the slice of bytes)

¥
str := "FOSDEM ¥ "

reflect.TypeOf(str).Size()
len(str)

@ Coralogix

Strings behind the scene

e Copying string will create shallow copy

o Butresults in a new string header!

:= "FOSDEM ¥ "
newStr := str

fmt.Printf("Sp\n", &str)
fmt.Println((*reflect.StringHeader)(unsafe.Pointer(&str)))

fmt.Printf("Sp\n", &newStr)
fmt.Println((*reflect.StringHeader)(unsafe.Pointer(&newStr)))

@ Coralogix

The problem zone

e In-memory stores

o Can result in large number of strings being stored (billions)
o Potential for repetition of strings (e.g. metadata, labels)
m cluster=us-prod-1
o Handling of incoming data
m Often involves unmarshalling into structs
m Strings from the request might be kept in memory long term

m Garbage collection?

@ Coralogix

The problem zone

e One-off data processing

o Documents that might require decoding (JSON, YAML)

o Repeated keys

@ Coralogix

Optimization strategies

e Detaching strings from larger memory pools

o To make sure we keep around only string
o Rest of the struct can be garbage collected
o Can be achieved by “detaching” of the string

o This can be achieved by using strings.Clone(s string) string

m Since Go 1.18

@ Coralogix

https://pkg.go.dev/strings#Clone

Optimization strategies

e String interning

o Technique to store only one single copy of each distinct string value
o At simplest, can be achieved by storing values in a map[string]string{}
o Each reference carries the string header overhead (16 bytes)
o How to know when to drop a string from interning map?
m Won't be garbage collected as long as map is around (possible DoS vector)
m Possible solutions:
e Periodically remove entries (akin to clearing cache)

e Countreferences (see example: prometheus/prometheus/pull/5316)

@ Coralogix

https://en.wikipedia.org/wiki/String_interning
https://github.com/prometheus/prometheus/pull/5316

Optimization strategies

e String interning the “dark arts” way

o What if the unused string references could be dropped “automagically”?

o Implementation in go4.org/intern

m Enter the concept of finalizers
o Boxes the interned values (string header) into a single pointer

m 16 bytes -> 8 bytes overhead

@ Coralogix

https://mdlayher.com/blog/unsafe-string-interning-in-go/
https://github.com/go4org/intern
https://github.com/go4org/intern/blob/main/intern.go#L141

README.md

Packages

go4.orglintern 60 reference

What

Contributors 4

Package intern lets you make smaller comparable values by boxing a larger comparable value (such as a string #. bradits
header) down into a single globally unique pointer. w

{68! josharian
Docs: h -

ﬁ* danderson

Status =

mdlayher

This package is mature and stable. However, it depends on the implementation details of the Go runtime. Use with
care.

) X)) . Languages
This package is a core, low-level package with no substantive dependencies.

We take code review, testing, dependencies, and performance seriously, similar to Go's standard library or the
golang.org/x repos.

https://github.com/go4org/intern

Optimization strategies

e String interning the “dark arts” way

o What if the unused string references could be dropped “automagically”?

o Implementation in go4.org/intern

m Enter the concept of finalizers
o Boxes the interned values (string header) into a single pointer
m 16 bytes -> 8 bytes overhead

o Example of use: thanos-io/thanos/pull/5926

@ Coralogix

https://mdlayher.com/blog/unsafe-string-interning-in-go/
https://github.com/go4org/intern
https://github.com/go4org/intern/blob/main/intern.go#L141
https://github.com/thanos-io/thanos/pull/5926

@ Explore < rhobs-testing-prometheus X Close a5 A oard) || Q rhobs-testing-prometheus

avg by (job) (avg time(go_memstats_heap_alloc_bytes{r ace=" 1anos ! rics browser > vg b) (go memstats heap objects{namespace="a-tha
[1h])) / 1e9

Options L.
Options

+ Add query © Query history ® Inspector

Beta) Code
Graph
(container memory working set bytes{
receive"}) / 1e9 i
400000000

Options
350000000

+ Add query O Query history ® Inspector 300000000

250000000
Graph
200000000 | ul I
Vi

i o
™ \u;m»-,;!\‘.,\’f\”w AN Ly '.w'\"a\‘w""l,\,v,m;\‘n"'"““'"‘w‘q‘k"'Ml

70 | b | Y
W VWA A VI
. ‘\,\W-ﬂ, % (w: LY R Y

150000000

100000000

12:00 12:30 13:00 13:30 14:00 14:30
== go_memstats_heap_objects == go_memstats_heap_objects

12:00 12:30 13 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30
== go_memstats_heap_alloc_bytes == go_memstats_heap_alloc_bytes == {image="quay.io/mgera/thanos:string-intern’}

== {image="quay.io/thanos/thanos:main-2022-11-28-86b4039°}

https://mdlayher.com/blog/unsafe-string-interning-in-go/
https://github.com/go4org/intern
https://github.com/go4org/intern/blob/main/intern.go#L141
https://github.com/thanos-io/thanos/pull/5926

Optimization strategies

e String interning with symbol table

o Structure with key-value pairs to lookup strings

o E.g.each int will correspond to given unique string

o Can be beneficial in scenarios with lot of duplicate strings
m to decrease network costs and number of allocations

o Example: thanos-io/thanos/pull/5906

@ Coralogix

https://github.com/thanos-io/thanos/pull/5906

Optimization strategies

e String concatenation

o Combining strings into single bigger backing string
o Saves the overhead of each string header
o Requires look up of individual strings within the structure

o Example: prometheus/prometheus/pull/10991

@ Coralogix

https://github.com/prometheus/prometheus/pull/10991

Conclusion

e Still a balancing act (memory vs CPU)

e More empirical data needed

@ Coralogix

Thank you for your attention!

@ Coralogix

More useful resources:

https://do101.org/article/string.html
https://stackoverflow.com/questions/65419268/how-to-deep-copy-a-string-in-qo/68972665#68972665

https:/mdlayher.com/blog/unsafe-string-interning-in-qo

https://commaok.xyz/post/intern-strings/

https://crawshaw.io/blog/tragedy-of-finalizers

@ Coralogix

https://go101.org/article/string.html
https://stackoverflow.com/questions/65419268/how-to-deep-copy-a-string-in-go/68972665#68972665
https://mdlayher.com/blog/unsafe-string-interning-in-go/
https://commaok.xyz/post/intern-strings/
https://crawshaw.io/blog/tragedy-of-finalizers

