
```

Optimizing string usage in Go programs

Matej Gera

04.02.2023
FOSDEM 2023



Introduction
● Matej Gera
● Software Engineer @ Coralogix
● Maintainer @ Thanos

● GitHub: @matej-g
● Twitter: @gmat90

https://coralogix.com/
https://thanos.io/
https://github.com/matej-g
https://twitter.com/gmat90


Three things today
● Understanding Go strings behind the scenes

● String use cases prone to performance bottlenecks

● Optimization strategies



Inspiration behind this talk
● (Data-driven) performance optimization

○ Working on Thanos project (distributed time-series database)

https://thanos.io/


Inspiration behind this talk
● (Data-driven) performance optimization

○ Don’t miss talk from Bartek Plotka today!

https://fosdem.org/2023/schedule/event/gofivestepsefficient/


Inspiration behind this talk
● Focus on strings



Inspiration behind this talk
● Focus on strings

- Source: PromCon EU 2022: Why Is It so Big? Analysing the Memory 
Consumption of Prometheus by Bryan Boreham

https://www.youtube.com/watch?v=vc5LgoiP_CA
https://www.youtube.com/watch?v=vc5LgoiP_CA


Strings behind the scene
● Immutable, can be converted to []byte, concatenable, slicable…

● But strings are not “just” strings

● Runtime representation of strings (/src/runtime/string.go):

reflect.StringHeader
    => 

https://go.dev/src/runtime/string.go


Strings behind the scene
● In actuality, it’s slice of bytes

● Size stays the same during lifetime (remember, immutable)

● Size of string will correspond to

○ String header overhead (16 bytes) + actual string (length of the slice of bytes)



Strings behind the scene
● Copying string will create shallow copy

○ But results in a new string header!



The problem zone
● In-memory stores

○ Can result in large number of strings being stored (billions)

○ Potential for repetition of strings (e.g. metadata, labels)

■ cluster=us-prod-1

○ Handling of incoming data

■ Often involves unmarshalling into structs

■ Strings from the request might be kept in memory long term 

■ Garbage collection?



The problem zone
● One-off data processing

○ Documents that might require decoding (JSON, YAML)

○ Repeated keys



Optimization strategies
● Detaching strings from larger memory pools

○ To make sure we keep around only string

○ Rest of the struct can be garbage collected

○ Can be achieved by “detaching” of the string

○ This can be achieved by using strings.Clone(s string) string

■ Since Go 1.18

https://pkg.go.dev/strings#Clone


Optimization strategies
● String interning

○ Technique to store only one single copy of each distinct string value 

○ At simplest, can be achieved by storing values in a map[string]string{}

○ Each reference carries the string header overhead (16 bytes)

○ How to know when to drop a string from interning map?

■ Won’t be garbage collected as long as map is around (possible DoS vector)

■ Possible solutions:

● Periodically remove entries (akin to clearing cache)

● Count references (see example: prometheus/prometheus/pull/5316)

https://en.wikipedia.org/wiki/String_interning
https://github.com/prometheus/prometheus/pull/5316


Optimization strategies
● String interning the “dark arts” way

○ What if the unused string references could be dropped “automagically”?

○ Implementation in go4.org/intern

■ Enter the concept of finalizers

○ Boxes the interned values (string header) into a single pointer

■ 16 bytes -> 8 bytes overhead

https://mdlayher.com/blog/unsafe-string-interning-in-go/
https://github.com/go4org/intern
https://github.com/go4org/intern/blob/main/intern.go#L141


Optimization strategies
● String interning the “dark arts” way

○ What if the unused string references could be dropped “automagically”?

○ Enter the concept of finalizers

○ Implementation in go4.org/intern

https://github.com/go4org/intern


Optimization strategies
● String interning the “dark arts” way

○ What if the unused string references could be dropped “automagically”?

○ Implementation in go4.org/intern

■ Enter the concept of finalizers

○ Boxes the interned values (string header) into a single pointer

■ 16 bytes -> 8 bytes overhead

○ Example of use: thanos-io/thanos/pull/5926

https://mdlayher.com/blog/unsafe-string-interning-in-go/
https://github.com/go4org/intern
https://github.com/go4org/intern/blob/main/intern.go#L141
https://github.com/thanos-io/thanos/pull/5926


Optimization strategies
● String interning the “dark arts” way

○ What if the unused string references could be dropped “automagically”?

○ Implementation in go4.org/intern

○ Enter the concept of finalizers

○ Example of use: thanos-io/thanos/pull/5926

https://mdlayher.com/blog/unsafe-string-interning-in-go/
https://github.com/go4org/intern
https://github.com/go4org/intern/blob/main/intern.go#L141
https://github.com/thanos-io/thanos/pull/5926


Optimization strategies
● String interning with symbol table

○ Structure with key-value pairs to lookup strings

○ E.g. each int will correspond to given unique string

○ Can be beneficial in scenarios with lot of duplicate strings

■ to decrease network costs and number of allocations

○ Example: thanos-io/thanos/pull/5906

https://github.com/thanos-io/thanos/pull/5906


Optimization strategies
● String concatenation

○ Combining strings into single bigger backing string

○ Saves the overhead of each string header

○ Requires look up of individual strings within the structure

○ Example: prometheus/prometheus/pull/10991

https://github.com/prometheus/prometheus/pull/10991


Conclusion
● Still a balancing act (memory vs CPU)

● More empirical data needed



Thank you for your attention!



More useful resources:
● https://go101.org/article/string.html
● https://stackoverflow.com/questions/65419268/how-to-deep-copy-a-string-in-go/68972665#68972665
● https://mdlayher.com/blog/unsafe-string-interning-in-go/
● https://commaok.xyz/post/intern-strings/ 
● https://crawshaw.io/blog/tragedy-of-finalizers 

https://go101.org/article/string.html
https://stackoverflow.com/questions/65419268/how-to-deep-copy-a-string-in-go/68972665#68972665
https://mdlayher.com/blog/unsafe-string-interning-in-go/
https://commaok.xyz/post/intern-strings/
https://crawshaw.io/blog/tragedy-of-finalizers

