HL)
eqgaqgascale

How we are using integration testing to reimplement Tailscale

About us

Juan Font Alonso (@juanfont) Kristoffer Dalby
- Headscale creator - Headscale high scorer
- European Space Agency - Member of Technical Staff at Tailscale
- First boss of Kristoffer - Juan Fonts manager at ESA

- Attention span of a goldfish on caffeine - Wants to rewrite Headscale in new langs

Who has heard of

Tailscale Headscale

What is Tailscale?

ci server file server

web server

dave'’s mac

J

tom’s mac

git server katya's thinkpad

.

What is Tailscale?

ci server ~N e file server

web server

dave’s mac

tom’s mac

git server /. katya'’s thinkpad

1’
the open source Tailscale node software (...) talks to what we call a

“coordination server” - essentially, a shared dropbox for public keys.

https://tailscale.com/blog/how-tailscale-works/

Quick Headscale history

- Juan makes Headscale to learn about how Tailscale works
- Kiristoffer doesn'’t get it, happy with his Ansible WireGuard setup

- Juan does a bunch of work

- Headscale gets traction

- Kristoffer gets curious

- Kristoffer is afraid of breaking things
- Kristoffer did the logo!

£ Juan Font Alonso
©®/ @juanfont

Headscale, an open source (and extremely dummy)
implementation of the @Tailscale coordination server.

github.com/juanfont/heads...

(side effects of the lockdown &)

12:36 PM - 21 Jun, 2020

1reply 4 shares 20 likes

What do we need to implement?

webservice

What do we need to implement?

=P

webservice

What do we need to implement?

webservice

What do we need to implement?

webservice

Headscale's three stages

“the illusion of w'orking, except when it does not'’

"Headscale can be improve,d with confidence’

AN

o —

@ &
/

“works most of the time'"

Hello! tell everyone about me/
Codej: ip\ / K \ aé//

webservice
Y,

‘

=

e

You 3o‘t o new Friend!

nodel: e

node e

N

\

Hello! tell everyone about me!

~

webservice

Y

heaolscale

~

updated A _

W\O\P

state machine

AN

~

And an unorthodox approach to handle concurrency

) ‘ g

=

- / . f L
2 4
L W e RIS
x , i
& : . N -
_ u A mmm

™

imgfiip.com k'’ a |I \l o TL ?

Y

heaolscale

no‘th‘ng...

state machine

A _

~

Y

heaolscale

~

_

foo(ej: ipx

n
<m:ss:n3>

state machine

A _

~

Y

ke,adscale_

updod:ed

MQP

state machine

o

AN

new node!/

he,adscale_

state machine

.‘vd.—é“'
= 6%

-
i §g
.
&9 . nem’
o
.

.
. . ..f;'.
- o - h ..-' "'i-" S IS
| H s
: Tre
A‘l'.'
"%'
i) ¥
.‘ >
of

Stage two - works most of the time

“the illusion of w'orking, e)ccep‘t when it does not"

"Headscale can be improve,d with confidence’

AN

% Z . —

/

“works most of the time'"

keaolscale

lscale

tai

haha!

70/100 runs ‘Podle_d

but/

now, we have o 300\! We. CoNn meaAasSure

We can build on top of that

e \We had two problems

o Reliably sending updates to clients (PR#83)
m 30% of the tests failed!

o Determining if we need to update a client (PR#84)
m 1% of the tests failed!

Changing the Rambo culture takes time

e \We kept merging untested stuff for a while

e In the Real World™ things kind of worked, so didn't feel the pressure

e Popularity kept growing, and so did external contributions

GitHub Stars

10.0k

8.0k

6.0k

H.0k

2.0k

F Jjuanfont/headscale }

@ Star History

202

Date

2022

2023

X} star—history.com

Stage three - actually works

“the illusion of w'orking, except when it does not'’

"Headscale can be improve,d with confidence’

% Z . =

/

“works most of the time'"

LJDD (Leeroy Jenkins Driven Development)

e Simplify and improve register/reauth flow #227

e Drop Gin as web framework for TS2019 API #656

e T1S2021 (Noise-based Tailscale v2 protocol) #738

e Rename Namespace -> User #1144

Integration testing helps with that little minor detail

e \We have a big dependency - client software that we do not control
o Although we get heads-up when they will change something big!

e Our tests target multiple Tailscale versions
o HEAD
o unstable
o Nine official minors releases (v1.20 - v1.36)

e We will know if Tailscale changes something

Integration testing supporting FOSS development

e Tests do not only help with software quality... but also the community around

e Maintainers can be more “confident’ in PRs from contributors

e Contributors can be more confident when submitting a PR

Challenges

e Requiring tests makes some contributors disappear

e Raises the learning curve (go test, our test framework vs no tests)

e Itis hard to convince people how awesome tests are, not only a chore

Integration test “v2”

Before, a lot of repeated / copied code
High bar to add new tests

Hard to update or change

Do not rely on time.Sleep...

Can be run in parallel

No documentation or good examples

Abstracting things

e ControlServer
Implemented as hsic
(HeadscalelnContainer)

e Exposes convenience functions:

O

o
O
o

WaitForReady
CreateNamespace
CreateAuthKey
ListMachinesInNamespace

TailscaleClient

Implemented as tsic
(TailscalelnContainer)

Exposes convenience functions:

O

O O O O O

Up

IPs

FQDN

Status
WaitForPeers
Ping

1

2 import (

55 e

4 "log"

5 "testing"

6

7 "github.com/stretchr/testify/assert"

8)

9

10 func (s *Integration0OIDCTestSuite) TestPingAllPeersByAddress() {
alal for hostname, tailscale := range s.tailscales {

1 ips, err := getIPs(s.tailscales)

13 assert.Nil(s.T(), err)

14 for peername, peerIPs := range ips {

15 for i, ip := range peerIPs {

16 // We currently cant ping ourselves, so skip that.
17 if peername == hostname {

18 continue

19 }

20 ST).

21 Run(fmt.Sprintf("%s-%s-%d", hostname, peername, i), func(t *testing.T) {
22 // We are only interested in "direct ping" which means what we
23 // might need a couple of more attempts before reaching the node.
24 command := []string{

25] "tailscale", "ping",

26 "--timeout=1s",

27 == c=104

28 "--until-direct=true",

29 ip.String(),

30 }

il

32 log.Printf(

33 "Pinging from %s to %s (%s)\n",

34 hostname,

35 peername,

36 ip,

3/)

38 stdout, stderr, err := ExecuteCommand(
39 &tailscale,

40 command,

41 [1string{},

42)

43 assert.Nil(t, err)

44 log.Printf(

45 "result for %s: stdout: %s, stderr: %s\n",
46 hostname,

47 stdout,

48 stderr,

49)

50 assert.Contains(t, stdout, "pong")

51 1)

52 }

53 }

54 }

558

1 package integration

2
3 import (
4 "testing"
5)
6
7 func TestPingAl1ByIP(t *testing.T) {
8 IntegrationSkip(t)
®
10 scenario, err := NewScenario()
11 if err 1= nil {
ilz) t.Errorf("failed to create scenario: %s", err)
13 }
14
05! spec := map[stringlint{
16 "namespacel": len(TailscaleVersions),
17 "namespace2": len(TailscaleVersions),
18 ¥
19
20 err = scenario.CreateHeadscaleEnv(spec)
21 if err != nil {
22 t.Errorf("failed to create headscale environment: %s", err)
23 }
24
25 allClients, err := scenario.ListTailscaleClients()
26 if err 1= nil {
27 t.Errorf("failed to get clients: %s", err)
28 }
29
30 alllps, err := scenario.ListTailscaleClientsIPs()
31 if err != nil {
32! t.Errorf("failed to get clients: %s", err)
33 }
34
35 err = scenario.WaitForTailscaleSync()
36 if err != nil {
37 t.Errorf("failed wait for tailscale clients to be in sync: %s", err)
38 }
39
40 success := 0
41
42 for _, client := range allClients {
43 for _, ip := range allIps {
44 err := client.Ping(ip.String())
45 iferr 1="nil 4
46 t.Errorf("failed to ping %s from %s: %s", ip, client.Hostname(), err)
47 } else {
48 success++
49
50 ¥
51 ¥
52
53 t.Logf("%d successful pings out of %d", success, len(allClients)*len(alllps))
54
55| err = scenario.Shutdown()
56 if err != nil {
57 t.Errorf("failed to tear down scenario: %s", err)
58 }

What do we test now?

Connectivity between nodes by IP and by MagicDNS within the Tailnet
Taildrop files all to all

All registration flows (authenticated keys, web+cli flow, OpenID Connect)
Isolated nodes and Ping via embedded DERP server

SSH (all to all, negative)

e headscale CLI

Future

e Proper ACL tests

o Unit tests
o Suffer from “how we think it should be” (need to reverse-engineer what comes from SaaS)

e Use Tailscale SaaS to verify our tests correctness

e Run “Tailscale in VM” to test with non-userspace

TL;DR: | am here waiting for the next talk

e Integration tests are the key to our success.

e The name “Headscale” also helps. Much better than Ponytail-scale.
e How we have maintained compatibility with Tailscale.

e The reason we are able to take contributions.

e The tests are not perfect, but they save us a lot.

Tailscale Happy Hour

Today 18:30 to 20:00 at Brewdog (Putterie 20)

Questions and how to reach us

github.com/juanfont/headscale

Discord

and feel free to chat with us here at Fosdem!

