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How we are using integration testing to reimplement Tailscale



About us

Juan Font Alonso (@juanfont) Kristoffer Dalby
- Headscale creator - Headscale high scorer
- European Space Agency - Member of Technical Staff at Tailscale
- First boss of Kristoffer - Juan Fonts manager at ESA

- Attention span of a goldfish on caffeine - Wants to rewrite Headscale in new langs




Who has heard of

Tailscale Headscale
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1’
the open source Tailscale node software (...) talks to what we call a

“coordination server” - essentially, a shared dropbox for public keys.

https://tailscale.com/blog/how-tailscale-works/



Quick Headscale history

- Juan makes Headscale to learn about how Tailscale works
- Kiristoffer doesn'’t get it, happy with his Ansible WireGuard setup

- Juan does a bunch of work

- Headscale gets traction

- Kristoffer gets curious

- Kristoffer is afraid of breaking things
- Kristoffer did the logo!

£ Juan Font Alonso
©®/ @juanfont

Headscale, an open source (and extremely dummy)
implementation of the @Tailscale coordination server.

github.com/juanfont/heads...

(side effects of the lockdown &)

12:36 PM - 21 Jun, 2020

1reply 4 shares 20 likes




What do we need to implement?
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Headscale's three stages

“the illusion of w'orking, except when it does not'’

"Headscale can be improve,d with confidence’
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And an unorthodox approach to handle concurrency
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Stage two - works most of the time

“the illusion of w'orking, e)ccep‘t when it does not"

"Headscale can be improve,d with confidence’
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We can build on top of that

e \We had two problems

o Reliably sending updates to clients (PR#83)
m  30% of the tests failed!

o Determining if we need to update a client (PR#84)
m 1% of the tests failed!



Changing the Rambo culture takes time

e \We kept merging untested stuff for a while

e In the Real World™ things kind of worked, so didn't feel the pressure

e Popularity kept growing, and so did external contributions



GitHub Stars

10.0k

8.0k

6.0k

H.0k

2.0k

F Jjuanfont/headscale }

@ Star History

202

Date

2022

2023

X} star—history.com



Stage three - actually works

“the illusion of w'orking, except when it does not'’

"Headscale can be improve,d with confidence’
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LJDD (Leeroy Jenkins Driven Development)

e Simplify and improve register/reauth flow #227

e Drop Gin as web framework for TS2019 API #656

e T1S2021 (Noise-based Tailscale v2 protocol) #738

e Rename Namespace -> User #1144



Integration testing helps with that little minor detail

e \We have a big dependency - client software that we do not control
o Although we get heads-up when they will change something big!

e Our tests target multiple Tailscale versions
o HEAD
o unstable
o Nine official minors releases (v1.20 - v1.36)

e We will know if Tailscale changes something




Integration testing supporting FOSS development

e Tests do not only help with software quality... but also the community around

e Maintainers can be more “confident’ in PRs from contributors

e Contributors can be more confident when submitting a PR



Challenges

e Requiring tests makes some contributors disappear

e Raises the learning curve (go test, our test framework vs no tests)

e Itis hard to convince people how awesome tests are, not only a chore



Integration test “v2”

Before, a lot of repeated / copied code
High bar to add new tests

Hard to update or change

Do not rely on time.Sleep...

Can be run in parallel

No documentation or good examples



Abstracting things

e ControlServer
Implemented as hsic
(HeadscalelnContainer)

e Exposes convenience functions:

O

o
O
o

WaitForReady
CreateNamespace
CreateAuthKey
ListMachinesInNamespace

TailscaleClient

Implemented as tsic
(TailscalelnContainer)

Exposes convenience functions:

O

O O O O O

Up

IPs

FQDN

Status
WaitForPeers
Ping



1

2 import (

55 e

4 "log"

5 "testing"

6

7 "github.com/stretchr/testify/assert"

8)

9

10 func (s *Integration0OIDCTestSuite) TestPingAllPeersByAddress() {
alal for hostname, tailscale := range s.tailscales {

1 ips, err := getIPs(s.tailscales)

13 assert.Nil(s.T(), err)

14 for peername, peerIPs := range ips {

15 for i, ip := range peerIPs {

16 // We currently cant ping ourselves, so skip that.
17 if peername == hostname {

18 continue

19 }

20 ST ).

21 Run(fmt.Sprintf("%s-%s-%d", hostname, peername, i), func(t *testing.T) {
22 // We are only interested in "direct ping" which means what we
23 // might need a couple of more attempts before reaching the node.
24 command := []string{

25] "tailscale", "ping",

26 "--timeout=1s",

27 == c=104

28 "--until-direct=true",

29 ip.String(),

30 }

il

32 log.Printf(

33 "Pinging from %s to %s (%s)\n",

34 hostname,

35 peername,

36 ip,

3/ )

38 stdout, stderr, err := ExecuteCommand(
39 &tailscale,

40 command,

41 [1string{},

42 )

43 assert.Nil(t, err)

44 log.Printf(

45 "result for %s: stdout: %s, stderr: %s\n",
46 hostname,

47 stdout,

48 stderr,

49 )

50 assert.Contains(t, stdout, "pong")

51 1)

52 }

53 }

54 }

558




1 package integration

2
3 import (
4 "testing"
5)
6
7 func TestPingAl1ByIP(t *testing.T) {
8 IntegrationSkip(t)
®
10 scenario, err := NewScenario()
11 if err 1= nil {
ilz) t.Errorf("failed to create scenario: %s", err)
13 }
14
05! spec := map[stringlint{
16 "namespacel": len(TailscaleVersions),
17 "namespace2": len(TailscaleVersions),
18 ¥
19
20 err = scenario.CreateHeadscaleEnv(spec)
21 if err != nil {
22 t.Errorf("failed to create headscale environment: %s", err)
23 }
24
25 allClients, err := scenario.ListTailscaleClients()
26 if err 1= nil {
27 t.Errorf("failed to get clients: %s", err)
28 }
29
30 alllps, err := scenario.ListTailscaleClientsIPs()
31 if err != nil {
32! t.Errorf("failed to get clients: %s", err)
33 }
34
35 err = scenario.WaitForTailscaleSync()
36 if err != nil {
37 t.Errorf("failed wait for tailscale clients to be in sync: %s", err)
38 }
39
40 success := 0
41
42 for _, client := range allClients {
43 for _, ip := range allIps {
44 err := client.Ping(ip.String())
45 iferr 1="nil 4
46 t.Errorf("failed to ping %s from %s: %s", ip, client.Hostname(), err)
47 } else {
48 success++
49
50 ¥
51 ¥
52
53 t.Logf("%d successful pings out of %d", success, len(allClients)*len(alllps))
54
55| err = scenario.Shutdown()
56 if err != nil {
57 t.Errorf("failed to tear down scenario: %s", err)
58 }



What do we test now?

Connectivity between nodes by IP and by MagicDNS within the Tailnet
Taildrop files all to all

All registration flows (authenticated keys, web+cli flow, OpenID Connect)
Isolated nodes and Ping via embedded DERP server

SSH (all to all, negative)

e headscale CLI



Future

e Proper ACL tests

o Unit tests
o Suffer from “how we think it should be” (need to reverse-engineer what comes from SaaS)

e Use Tailscale SaaS to verify our tests correctness

e Run “Tailscale in VM” to test with non-userspace



TL;DR: | am here waiting for the next talk

e Integration tests are the key to our success.

e The name “Headscale” also helps. Much better than Ponytail-scale.
e How we have maintained compatibility with Tailscale.

e The reason we are able to take contributions.

e The tests are not perfect, but they save us a lot.



Tailscale Happy Hour

Today 18:30 to 20:00 at Brewdog (Putterie 20)



Questions and how to reach us

github.com/juanfont/headscale

Discord

and feel free to chat with us here at Fosdem!



