
PONSARD Christophe 
NAM-IP Computer Museum

CETIC Researcher, DW Champion

FOSDEM 23 – Emulation – February 5

Understanding the Bull GAMMA 3 first generation computer 
through emulation



Context – NAM-IP Computer Museum
• Located in Namur/Belgium - 30’ from Brussels

- worth a visit if you are staying a few days I Belgium after FOSDEM)
- also: Pixel Museum (in BXL) & HomeComputerMuseum (in Eindhoven/NL not so far)

• Missions:

• Preservation: safeguarding digital heritage, focus on local pioneers

• Acquisition of artefacts, enriching collections: Bull, Burroughs/Unysis, I&B,…

• Exhibitions: for all, specific animation, permanent/temporary

• Research: about machines, software, communities ➔ here BULL GAMMA 3

• “Container design”, an historical parallel 

www.nam-ip.be

http://www.nam-ip.be/


Outlook

• Historical context : a long time ago…

• Discovering the machine

• A look at existing emulators

• Our JAVA emulator

• Some lessons learned



Back to Early Electronic Machines
with transition from electromechanical ➔ electronic machines

1950 1955 19601945 1965 1970

45: EDVAC &
Von Neuman
architecture

47: assembly
(Booth, ARC)

(me ;-)

53-55: dev of 
magnetic core
memory 
(Whirlwind)

GAMMA 3

71: first µ-proc 
(Intel)

61: TTL
56: hard
disk drive 
(IBM)

47: bipolar
transistor 
(exp.)

First generation 
vacuum tubes, delay lines, drums

Second generation 
transistors, magnetic core

Third generation 
Integrated Circuits

4th gen
µProc

Electromechanical area

43: Colossus
(Bletchley park)

45:ENIAC 64: IBM 36059: IBM 1401

48: Bull BS120 49: IBM 407

55: TRADIC
52: GAMMA 3

60: GAMMA 30 
(RCA)

58: GAMMA 60 53: IBM650 
“ORDINATEUR”



Inside the machine: sources ?

• Only a few left (Anger, Grenoble, Frankfurt, some pieces in Namur)

• Documentation: ACONIS/Bull Belgium

• Emulators !



Hardware (initial version)
First generation computer:

• vacum tubes, delay lines

Code stored in a connection panel (64 instructions)
• So not Von Neumann  (pgm need to be in memory)
• although somehow “memory mapped” on “serie 3”

Main memory: 7 registers
• Delay lines
• Vacuum tube for regeneration
• 8.5 kg to store… 6 bytes

ALU:
• vacuum tubes (low reliability) ➔ germanium diodes
• + -➔ * % performed internally by iterative + -

Clock: 2.5 Hz… because synchronised with motor 
of motor of the connected electromechanical equipment !

Nice “drawer” design easing maintenance !



GAMMA 3 : Computer and/or Calculator ?

• Initially: designed as calculator « slave » for tabulating machine
“In its current configuration, the computer acts as an extension unit for the punched card machine 
it is connected to. The cards are read in the reader station which transmits data to the computer.
The computer in turn performs all necessary calculations and transmits the results back to the 
punched card machine which will print or punch these values. Regardless of the task, the computer is 
so fast that there is no visible delay caused by the calculations” 
(Pierre Letort, 1953)

So programs = specific calculation routines called by tabulating machine

• Evolution:
• 3M: scientific version with floating point support 

(otherwise need subroutines)

• ET (1957): drum extension (about 100Kb) ➔ program NOW truly in memory

• Finally: GAMMA 3 : first French computer 
➔ GAMMA 3 becomes the central unit 
and tabulating machine becomes the peripheral device (= transition !)



Should a Computer Operate in Decimal or Binary ?

Pro:

• Only two figure: powerful

• Maps easily to relays !

Cons:

• Longuer

• Needs to translate back & forth with decimal (for humans

Conclusion ?

• Use « semi-decimal » ➔ binary-coded decimal !

• Char = 4 bit to code 1 BCD (or 1 HEX)

Note: later extension (ET) supported full binary mode

1958 GAMMA3 course



GAMMA 3 – Core “banale” memory : a few registers

• M0=M1: “accumulator”  IN/OUT

• M2..M7: only IN

• M8..M15: “extra memory” 
(switched “octade” see extension)

• Technology: delay line
• 1 register = 1 word

• 1 word of 12 chars 
of 4 bits (BCD or HEX)

➔1 word = 6 bytes (note: longer than 32bit integer)

➔M1..M7 = 42 bytes of “main” memory



GAMMA 3 Complete Architecture

Note also:

PC, CMP, shift…

Used in instructions



GAMMA 3 – Structure of Instruction Set

Structure: 4 chars

• TO: Type of Operation
• E.g. AN (add), SN (subtract), MR (reduced mult.), MC (complete mult.),...

• AD: ADdress
• Memory register involved in operation

• OD: Ordre Début (i.e. start position)

• OF: Ordre Fin (i.e. end position)
• Because operation can consider 

a subrange of a Word !

1 Word = 12 char 
➔ so possible to store 3 instructions/word

BO

AN

OB



Coding sheets



Exploring the Instruction Set (excerpt)
0XXX – V variant
• 0000 NOP ;-)
• 01xx JUMP if > flag set
• 02xx JUMP if = flag set
• 03xx JUMP if  >= flag set
• 04xx JUMP if neg flag set

1XXX 
• 11/12/13xx: VCS: serie switch
• 15/16/17xx: VRS: serie return
• 18/19xx: out to connected machine
• 1Axx: decimal mode (CD)
• 1Fxx: binary mode     (CB)
• …

2XXX – drum transfer (BT)
…

3XXX – setting memory to zero

4XXX – constant transfer to memory
• AD: mem
• OD: position
• OF: value

5XX – copy between octads

6XX – transfer to operative mem. (BO)
• AD: mem
• OD & OF: range

7XX
• 71/72xx: shift memory
• 73/74xx: logical AND 

(what about OR ?)

8XX – transfer from operative mem. (OB)
• AD: mem
• OD & OF: range

9XXX – comparison operations
…

AXXX – addition  (AN)

BXXX – subtraction (SN)

CXXX – reduced multiplication (RM)

DXXX – reduced division (RD)

EXXX – full multiplication (MC)

FXXX – full division (FD)

Note: 

• “reduced” * / for “small numbers” 
➔range need to be manager

• “complete” * / operation using 
M1+M2 as extended storage



A look at the
code card

• “ordonnateur”
“ordinateur” in French
was coined I year later 
by J. Perret for IBM
“god puts world in order”

• Not so easy to decode…



Emulator by V. Joguin (1990’s)

• Written in x86 
assembly code
by Vincent Joguin
(1995)

• Now need an emulator
(thanks DOSBox !)

http://vincent.joguin.com/

GAMMAET.ZIP

http://vincent.joguin.com/GAMMAET.ZIP
http://vincent.joguin.com/GAMMAET.ZIP


BullGammator (ACONIT, 2020)
• Open Source : https://github.com/lutrampal/bullgammator

• Web-base written in Javascript (nodeJS), very well documented

• Include panel interface, library, console (with stepping mode “titiller”)

• Nice code base for emulator core with unit tests
➔ analysed and mainly transposed in JAVA

https://github.com/lutrampal/bullgammator


3D Simulator (by Aconit)



Java(script) Emulator Structure
• Machine description (see structure)

• BullGamma➔memory, series, drum, connected machines,…

• Instruction set:
• Execute method taking instruction and machine (context) 

as parameter
• By type, using a object hierarchy

• Execution management, UI (basic)

• Tests (w.r.t. spec)

• Code: https://github.com/NAMIP-Computer-Museum/gamma3

Machine

Series

Drum
- trackGroup
- track
- block

Connected
Machine(s)

Banal
Memories

Groups

Panel 
(Serie3)

https://github.com/NAMIP-Computer-Museum/gamma3


A look at the addition – carry algo (dec/bin fine)
/**

add the given memory to this one - this works both in decimal and binary mode

@param other the memory that should be added

@param from index of the block from which the addition should start

@param to index of the block to which the addition should end (excluded)

@param overriding_carry if true, at the end of the addition, the resulting carry out will override the next

memory block if it is not null. Otherwise it will be added to the next memory block.

*/

public void add(Memory other, byte from, byte to, boolean overriding_carry) { 

assert (from >= 0) : "from should not be negative";

assert (from < to):  "from should be inferior to "+ to;

assert (to <= this.blocks.length) : "to should be inferior to the number of blocks per memory";

int carry = 0; // implementation simulates the real work across memories

for (int i = from; (i < to) || ((carry == 1) && !overriding_carry); i++) { // TODO check precedence

int other_val = i < to ? other.blocks[i] : 0;

int res = this.blocks[i%this.blocks.length + (this.blocks.length - NB_CHRS_PER_WORD)] + other_val + carry;

if (res >= this.getMode().base) {

carry = 1;

res -= this.getMode().base;

} else {

carry = 0;

}

this.blocks[i%this.blocks.length + (this.blocks.length - NB_CHRS_PER_WORD)] = (byte)res;

}

if (overriding_carry && (carry!=0)) {

this.blocks[to%this.blocks.length] += carry;

}

}



A look at the subtraction ➔ Java substract !
/**

subtract the given memory to this one

@param other the memory that should be subtracted

@param from index of the block from which the subtraction should start

@param to index of the block to which the subtraction should end (excluded)

*/

public void subtract(Memory other, byte from, byte to, byte this_from, byte this_to) {

assert (from >= 0) : "from should not be negative";

assert (from < to) : "from should be inferior to to";

assert (to <= this.blocks.length) : "to should be inferior to the number of blocks 

per memory";

long valM1 = this.getDecimalValue(this_from, this_to) - other.getDecimalValue(from, 

to); // implem is done through translation to java long (int not enough !)

this.setDecimalValue(Math.abs(valM1), this_from, this_to);

if (valM1 < 0 && this.getMode() == MemoryMode.DECIMAL) {

this.bullGamma.ms1 = 10;

}

}



A look at the division
/**

divide the given memory to this one

@param other the memory that should be divided

@param from index of the block from which the division should start

@param to index of the block to which the division should end (excluded)

*/

public void divide(Memory other, byte from, byte to) {

long vmb = other.getDecimalValue(from, to);

if (vmb == 0) {

throw new Error("Division by 0.");

}

while (this.bullGamma.md > 0) {

while (this.getDecimalValue((byte)(from + this.blocks.length - NB_CHRS_PER_WORD), (byte)this.blocks.length) < 

vmb && this.bullGamma.md > 0) {

this.shiftLeft();

this.bullGamma.md--;

}

while (this.getDecimalValue((byte)(from + this.blocks.length - NB_CHRS_PER_WORD), (byte)this.blocks.length) 

>= vmb) {

this.blocks[0]++;

this.subtract(other, from, to, (byte)(from + this.blocks.length - NB_CHRS_PER_WORD), 

(byte)this.blocks.length);

}

}

}



Current Experimentation Environment

IDE (Eclipse)

Fibonnacci suite

Utilities:

- sqrt

- 2nd degree



Some available FP subroutines



Lessons Learned…

• Exploring early machines quite a strange journey: 
• Emerging concepts, still being explored
• Gone technologies
➔need to look at larger historical context

• Not so complex to code
but many details
and limited original reference to test against

• Still a lot to explore (e.g. floating point), implement (UI…), gather/experiment 
with “code”

• In summary, an very rewarding experience both technically and culturally !



Questions ?
Some reference & credits
• Fédération des Equipes Bull for access to their GAMMA3 documentation at NAM-IP museum or 

online: http://www.feb-patrimoine.com/projet/gamma3/gamma3.htm

• Vincent Joguin for its DOS-based emulator
• vidéo (french): https://www.youtube.com/watch?v=X_ermLbQYLI
• executable: http://vincent.joguin.com/GAMMAET.ZIP
• José Maillard and Lucas Trampal for the Open Source javascript emulator (coordinated by ACONIT) 

https://github.com/lutrampal/bullgammator/

• ACONIT for on-line documentation and running emulator and keeping the GAMMA3 memory alive with students 
• documentation: https://www.aconit.org/histoire/Gamma-3
• online emulator: https://www.aconit.org/histoire/Gamma-3/Simulateur

• Code: https://github.com/NAMIP-Computer-Museum/gamma3

Visit us: www.nam-ip.be Twitter @ComputerMuseumB

Contact me: christophe.ponsard@cetic.be @cponsard @cponsard@ludosphere.fr

http://www.feb-patrimoine.com/projet/gamma3/gamma3.htm
https://www.youtube.com/watch?v=X_ermLbQYLI
http://vincent.joguin.com/GAMMAET.ZIP
https://github.com/lutrampal/bullgammator/
https://www.aconit.org/histoire/Gamma-3
https://www.aconit.org/histoire/Gamma-3/Simulateur
https://github.com/NAMIP-Computer-Museum/gamma3
http://www.nam-ip.be/
mailto:christophe.ponsard@cetic.be

	Diapositive 1
	Diapositive 2 Context – NAM-IP Computer Museum
	Diapositive 3 Outlook
	Diapositive 4 Back to Early Electronic Machines with transition from electromechanical  electronic machines
	Diapositive 5 Inside the machine: sources ?
	Diapositive 6 Hardware (initial version)
	Diapositive 7 GAMMA 3 : Computer and/or Calculator ?
	Diapositive 8 Should a Computer Operate in Decimal or Binary ?
	Diapositive 9 GAMMA 3 – Core “banale” memory : a few registers
	Diapositive 10 GAMMA 3 Complete Architecture
	Diapositive 11 GAMMA 3 – Structure of Instruction Set
	Diapositive 12 Coding sheets
	Diapositive 13 Exploring the Instruction Set (excerpt)
	Diapositive 14 A look at the code card
	Diapositive 15 Emulator by V. Joguin (1990’s)
	Diapositive 16 BullGammator (ACONIT, 2020)
	Diapositive 17 3D Simulator (by Aconit)
	Diapositive 18 Java(script) Emulator Structure
	Diapositive 19 A look at the addition – carry algo (dec/bin fine)
	Diapositive 20 A look at the subtraction  Java substract !
	Diapositive 21 A look at the division
	Diapositive 22 Current Experimentation Environment
	Diapositive 23 Some available FP subroutines
	Diapositive 24 Lessons Learned…
	Diapositive 25 Questions ?

