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Who is this guy?
Fridtjof Siebert

Email: siebert@tokiwa.software
github: fridis
twitter: @fridi_s

‘90-‘94 AmigaOberon, AMOK PD
‘97 FEC Eiffel Sparc / Solaris
‘98-‘99 OSF: TurboJ Java Compiler
‘00-‘01 PhD on real-time GC
‘02-‘19 JamaicaVM real-time JVM based on

CLASSSPATH / OpenJDK,
VeriFlux static analysis tool

‘20-… Fuzion 
‘21-… Tokiwa Software
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Motivation: Fuzion Language
Many languages overloaded with concepts like classes, 
methods, interfaces, constructors, traits, records, structs, 
packages, values, …

 ➡ Fuzion has one concept: a feature
Today’s compilers and tools are more powerful

 ➡ Tools make better decisions 
Systems are safety-critical

 ➡ we need to ensure correctness
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Fuzion Resources
Fuzion available 
 ➡ sources: github.com/tokiwa-software/fuzion
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Fuzion Resources
Fuzion available 
 ➡ sources: github.com/tokiwa-software/fuzion
 ➡ Website: flang.dev

● tutorial
● design
● examples
● ...
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Backing Company

 ➡ supports development of Fuzion

 ➡ currently four employees

 ➡ hiring

 ➡ searching for funding
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This Talk
Complementarity of Effects and Types

 ➡ Algebraic Effects for Fuzion

 ➡ Types as first-class features

 ➡ Types used to name Effects
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Fuzion Effects
Fuzion Features are pure functions

 ➡ no mutation of data, no side-effects
Effects are used to model non-functional aspects

 ➡ state changes

 ➡ I/O

 ➡ thread communication

 ➡ exceptions
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Algebraic Effects
Definition

 ➡ an algebraic effect is a set of operations
● read, get_time, panic, log, …
● operations often model a non-functional effect

 ➡ operations may resume or abort

 ➡ an effect’s operations may be implemented by different handlers 

 ➡ to execute code that uses an effect, a corresponding
 handler must be installed
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Fuzion Effects
Static analysis verifies effects

 ➡ Static analysis determines all effects

 ➡ library code must list all effects

 ➡ unexpected effects are a compile-time error
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Fuzion Effects Example
Hello World:
  hello_world ! io.out =>
    say "hello world!"

  hello_world
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Fuzion Effects Example
Hello World:
  hello_world ! io.out =>
    say "hello world!"

  hello_world

> fz hw.fz 
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Fuzion Effects Example
Hello World:
  hello_world ! io.out =>
    say "hello world!"

  hello_world

> fz hw.fz 
hello world!
>
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Fuzion Effects Example
Hello World:
  hello_world ! io.out =>
    say "hello world!"

  hello_world

> fz hw.fz 
hello world!
> fz -effects hw.fz 
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Fuzion Effects Example
Hello World:
  hello_world ! io.out =>
    say "hello world!"

  hello_world

> fz hw.fz 
hello world!
> fz -effects hw.fz 
io.out
>
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Fuzion Effects Example
Hello World:
  hello_world ! io.out =>
    say "hello world!"

  my_handler : io.Can_Print is
    print(s Any) unit is
      io.err.print (($s).replace "!" "!!!11!")

  io.out my_handler ()->hello_world
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Fuzion Effects Example
Hello World:
  hello_world ! io.out =>
    say "hello world!"

  my_handler : io.Can_Print is
    print(s Any) unit is
      io.err.print (($s).replace "!" "!!!11!")

  io.out my_handler ()->hello_world

> fz hw.fz 
hello world!!!11!
>
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Fuzion Effects Example
Hello World:
  hello_world ! io.out =>
    say "hello world!"

  my_handler : io.Can_Print is
    print(s Any) unit is
      io.err.print (($s).replace "!" "!!!11!")

  io.out my_handler ()->hello_world

> fz hw.fz 
hello world!!!11!
> fz -effects hw.fz 
io.err
>
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Types as First-Class Features
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Types as First-Class Features
Generics in Java
  <T> void show_number(T a)
  {
    System.out.println("a is " + a);
  }
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Types as First-Class Features
Type parameters in Fuzion
  show_number(T type,
              a T) =>
    say "a is $a"

Generics in Java
  <T> void show_number(T a)
  {
    System.out.println("a is " + a);
  }
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Types as First-Class Features
Type parameters in Fuzion
  show_number(T type,
              a T) =>
    say "a is $a"

> 
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Types as First-Class Features
Type parameters in Fuzion
  show_number(T type,
              a T) =>
    say "a is $a"

  show_number i32 1234
  show_number f64 3.14

> 
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Types as First-Class Features
Type parameters in Fuzion
  show_number(T type,
              a T) =>
    say "a is $a"

  show_number i32 1234
  show_number f64 3.14

> fz types.fz
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Types as First-Class Features
Type parameters in Fuzion
  show_number(T type,
              a T) =>
    say "a is $a"

  show_number i32 1234
  show_number f64 3.14

> fz types.fz
a is 1234
a is 3.14
>
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Types as First-Class Features
Type inference
  show_number(T type,
              a T) =>
    say "a is $a"

  show_number i32 1234
  show_number f64 3.14

> fz types.fz
a is 1234
a is 3.14
>
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Types as First-Class Features
Type inference
  show_number(T type,
              a T) =>
    say "a is $a"

  show_number 1234
  show_number 3.14

>
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Types as First-Class Features
Type constraints
  show_number(T type : numeric T,
              a T) =>
    say "a is $a"

  show_number 1234
  show_number 3.14

> 
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Types as First-Class Features
Type constraints
  show_number(T type : numeric T,
              a T) =>
    say "a is $a, twice is {a+a}"

  show_number 1234
  show_number 3.14

> 
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Types as First-Class Features
Type constraints
  show_number(T type : numeric T,
              a T) =>
    say "a is $a, twice is {a+a}"

  show_number 1234
  show_number 3.14

> fz types.fz
a is 1234, twice is 2468
a is 3.14, twice is 6.28
>
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Types as First-Class Features
Type values
  show_number(T type : numeric T,
              a T) =>
    say "a is $a of type {T.name}"

  show_number 1234
  show_number 3.14

>
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Types as First-Class Features
Type values
  show_number(T type : numeric T,
              a T) =>
    say "a is $a of type {T.name}"

  show_number 1234
  show_number 3.14

> fz types.fz
a is 1234 of type i32
a is 3.14 of type f64
>
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Types as First-Class Features
Type with user defined features
  sum_of(T type : numeric T,
         l list T           ) =>
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Types as First-Class Features
Type with user defined features
  sum_of(T type : numeric T,
         l list T           ) =>
    l ? nil    => 
      | c Cons => 
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Types as First-Class Features
Type with user defined features
  sum_of(T type : numeric T,
         l list T           ) =>
    l ? nil    => 
      | c Cons => c.head + sum_of c.tail
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Types as First-Class Features
Type with user defined features
  sum_of(T type : numeric T,
         l list T           ) =>
    l ? nil    => 
      | c Cons => c.head + sum_of c.tail
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Types as First-Class Features
Type with user defined features
  sum_of(T type : numeric T,
         l list T           ) =>
    l ? nil    => T.zero
      | c Cons => c.head + sum_of c.tail
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Types as First-Class Features
Type with user defined features
  sum_of(T type : numeric T,
         l list T           ) =>
    l ? nil    => T.zero
      | c Cons => c.head + sum_of c.tail

  numeric is
    type.zero numeric.this.type is abstract
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Types as First-Class Features
Type with user defined features
  sum_of(T type : numeric T,
         l list T           ) =>
    l ? nil    => T.zero
      | c Cons => c.head + sum_of c.tail

  numeric is
    type.zero numeric.this.type is abstract
  i32 : numeric is
    type.zero i32 is 0
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Types as First-Class Features
Type with user defined features
  sum_of(T type : numeric T,
         l list T           ) =>
    l ? nil    => T.zero
      | c Cons => c.head + sum_of c.tail
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Types as First-Class Features
Type with user defined features
  sum_of(T type : numeric T,
         l list T           ) =>
    l ? nil    => T.zero
      | c Cons => c.head + sum_of c.tail

  say (sum_of [3.14159, 2.71828].as_list)
  say (sum_of [1 ⁄ 3, 1 ⁄ 4].as_list)
  say (sum_of f64 nil)
  say (sum_of (fraction u8) nil)
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Types as First-Class Features
Type with user defined features
  sum_of(T type : numeric T,
         l list T           ) =>
    l ? nil    => T.zero
      | c Cons => c.head + sum_of c.tail

  say (sum_of [3.14159, 2.71828].as_list)
  say (sum_of [1 ⁄ 3, 1 ⁄ 4].as_list)
  say (sum_of f64 nil)
  say (sum_of (fraction u8) nil)

> fz types.fz
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Types as First-Class Features
Type with user defined features
  sum_of(T type : numeric T,
         l list T           ) =>
    l ? nil    => T.zero
      | c Cons => c.head + sum_of c.tail

  say (sum_of [3.14159, 2.71828].as_list)
  say (sum_of [1 ⁄ 3, 1 ⁄ 4].as_list)
  say (sum_of f64 nil)
  say (sum_of (fraction u8) nil)

> fz types.fz
5.85987
7⁄12
0.0
0⁄1
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Types as Named Effects
Example: Simple linked ring

 ➡ Creation of a linked ring requires mutation

 ➡ Any calculation using ring therefore uses mutate effect

 ➡ But feature may still be pure if mutation affects only
 temporary local state 
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Types as Named Effects
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Types as Named Effects
Ring using global mutate effect
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Types as Named Effects
Ring using global mutate effect
  Ring(data String,
       old option Ring) ref is
    last Ring := (old ? nil    => Ring.this
                      | r Ring => r.last   )
    next := mut  (old ? nil    => Ring.this
                      | r Ring => r        )
    last.next <- Ring.this
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Types as Named Effects
Ring using global mutate effect
  Ring(data String,
       old option Ring) ref is
    last Ring := (old ? nil    => Ring.this
                      | r Ring => r.last   )
    next := mut  (old ? nil    => Ring.this
                      | r Ring => r        )
    last.next <- Ring.this
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Types as Named Effects
Ring using global mutate effect
  Ring(data String,
       old option Ring) ref is
    last Ring := (old ? nil    => Ring.this
                      | r Ring => r.last   )
    next := mut  (old ? nil    => Ring.this
                      | r Ring => r        )
    last.next <- Ring.this

  demo =>
    r := Ring "A" (Ring "B" (Ring "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  demo

> fz demo.fz
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Types as Named Effects
Ring using global mutate effect
  Ring(data String,
       old option Ring) ref is
    last Ring := (old ? nil    => Ring.this
                      | r Ring => r.last   )
    next := mut  (old ? nil    => Ring.this
                      | r Ring => r        )
    last.next <- Ring.this

  demo =>
    r := Ring "A" (Ring "B" (Ring "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  demo

> fz demo.fz 
A B C A B C A B C A
> 
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Types as Named Effects
Ring using global mutate effect
  Ring(data String,
       old option Ring) ref is
    last Ring := (old ? nil    => Ring.this
                      | r Ring => r.last   )
    next := mut  (old ? nil    => Ring.this
                      | r Ring => r        )
    last.next <- Ring.this

  demo =>
    r := Ring "A" (Ring "B" (Ring "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  demo

> fz demo.fz 
A B C A B C A B C A
> fz -effects demo.fz
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Types as Named Effects
Ring using global mutate effect
  Ring(data String,
       old option Ring) ref is
    last Ring := (old ? nil    => Ring.this
                      | r Ring => r.last   )
    next := mut  (old ? nil    => Ring.this
                      | r Ring => r        )
    last.next <- Ring.this

  demo =>
    r := Ring "A" (Ring "B" (Ring "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  demo

> fz demo.fz 
A B C A B C A B C A
> fz -effects demo.fz
exit
io.err
io.out
mutate
panic
>
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Types as Named Effects
Ring using local mutability
  Ring(data String,
       old option Ring) ref is
    last Ring := (old ? nil    => Ring.this
                      | r Ring => r.last   )
    next := mut  (old ? nil    => Ring.this
                      | r Ring => r        )
    last.next <- Ring.this

  demo =>
    r := Ring "A" (Ring "B" (Ring "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  demo

>
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Types as Named Effects
Ring using local mutability
  Ring(
       data String,
       old option  Ring   ) ref is
    last Ring   :=    (old ? nil    => Ring.this
                           | r Ring => r.last   )
    next :=       mut (old ? nil    => Ring.this
                           | r Ring => r        )
    last.next <- Ring.this

  demo =>
    r := Ring "A" (Ring "B" (Ring    "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  demo

>
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Types as Named Effects
Ring using local mutability
  Ring(M type : mutate,
       data String,
       old option  Ring   ) ref is
    last Ring   :=    (old ? nil    => Ring.this
                           | r Ring => r.last   )
    next :=       mut (old ? nil    => Ring.this
                           | r Ring => r        )
    last.next <- Ring.this

  demo =>
    r := Ring "A" (Ring "B" (Ring    "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  demo

>
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Types as Named Effects
Ring using local mutability
  Ring(M type : mutate,
       data String,
       old option (Ring M)) ref is
    last Ring M :=    (old ? nil    => Ring.this
                           | r Ring => r.last   )
    next :=       mut (old ? nil    => Ring.this
                           | r Ring => r        )
    last.next <- Ring.this

  
  demo =>
    r := Ring "A" (Ring "B" (Ring    "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  demo

>
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Types as Named Effects
Ring using local mutability
  Ring(M type : mutate,
       data String,
       old option (Ring M)) ref is
    last Ring M :=    (old ? nil    => Ring.this
                           | r Ring => r.last   )
    next :=       mut (old ? nil    => Ring.this
                           | r Ring => r        )
    last.next <- Ring.this

  
  demo =>
    r := Ring "A" (Ring "B" (Ring    "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  demo

>
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Types as Named Effects
Ring using local mutability
  Ring(M type : mutate,
       data String,
       old option (Ring M)) ref is
    last Ring M :=    (old ? nil    => Ring.this
                           | r Ring => r.last   )
    next := M.env.new (old ? nil    => Ring.this
                           | r Ring => r        )
    last.next <- Ring.this

  demo =>
    r := Ring "A" (Ring "B" (Ring    "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  demo

>
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Types as Named Effects
Ring using local mutability
  Ring(M type : mutate,
       data String,
       old option (Ring M)) ref is
    last Ring M :=    (old ? nil    => Ring.this
                           | r Ring => r.last   )
    next := M.env.new (old ? nil    => Ring.this
                           | r Ring => r        )
    last.next <- Ring.this

  mm : mutate is
  demo =>
    r := Ring "A" (Ring "B" (Ring    "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  demo

>
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Types as Named Effects
Ring using local mutability
  Ring(M type : mutate,
       data String,
       old option (Ring M)) ref is
    last Ring M :=    (old ? nil    => Ring.this
                           | r Ring => r.last   )
    next := M.env.new (old ? nil    => Ring.this
                           | r Ring => r        )
    last.next <- Ring.this

  mm : mutate is
  demo =>
    r := Ring "A" (Ring "B" (Ring mm "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  demo

>
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Types as Named Effects
Ring using local mutability
  Ring(M type : mutate,
       data String,
       old option (Ring M)) ref is
    last Ring M :=    (old ? nil    => Ring.this
                           | r Ring => r.last   )
    next := M.env.new (old ? nil    => Ring.this
                           | r Ring => r        )
    last.next <- Ring.this

  mm : mutate is
  demo =>
    r := Ring "A" (Ring "B" (Ring mm "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  mm.use ()->demo

>
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Types as Named Effects
Ring using local mutability
  Ring(M type : mutate,
       data String,
       old option (Ring M)) ref is
    last Ring M :=    (old ? nil    => Ring.this
                           | r Ring => r.last   )
    next := M.env.new (old ? nil    => Ring.this
                           | r Ring => r        )
    last.next <- Ring.this

  mm : mutate is
  demo =>
    r := Ring "A" (Ring "B" (Ring mm "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  mm.use ()->demo

> fz demo.fz 
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Types as Named Effects
Ring using local mutability
  Ring(M type : mutate,
       data String,
       old option (Ring M)) ref is
    last Ring M :=    (old ? nil    => Ring.this
                           | r Ring => r.last   )
    next := M.env.new (old ? nil    => Ring.this
                           | r Ring => r        )
    last.next <- Ring.this

  mm : mutate is
  demo =>
    r := Ring "A" (Ring "B" (Ring mm "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  mm.use ()->demo

> fz demo.fz 
A B C A B C A B C A 
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Types as Named Effects
Ring using local mutability
  Ring(M type : mutate,
       data String,
       old option (Ring M)) ref is
    last Ring M :=    (old ? nil    => Ring.this
                           | r Ring => r.last   )
    next := M.env.new (old ? nil    => Ring.this
                           | r Ring => r        )
    last.next <- Ring.this

  mm : mutate is
  demo =>
    r := Ring "A" (Ring "B" (Ring mm "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  mm.use ()->demo

> fz demo.fz 
A B C A B C A B C A
> fz -effects demo.fz 
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Types as Named Effects
Ring using local mutability
  Ring(M type : mutate,
       data String,
       old option (Ring M)) ref is
    last Ring M :=    (old ? nil    => Ring.this
                           | r Ring => r.last   )
    next := M.env.new (old ? nil    => Ring.this
                           | r Ring => r        )
    last.next <- Ring.this

  mm : mutate is
  demo =>
    r := Ring "A" (Ring "B" (Ring mm "C" nil))
    for n := r, n.next.get; i in 1..10 do
      yak "{n.data} "
  mm.use ()->demo

> fz demo.fz 
A B C A B C A B C A
> fz -effects demo.fz
exit
io.err
io.out
panic
> 
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Fuzion: Status
Fuzion still under development
 ➡ language definition slowly getting more stable
 ➡ base library work in progress
 ➡ current implementation providing JVM and C backends

 ➡ Basic analysis tools available
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Fuzion: Status
Fuzion still under development
 ➡ language definition slowly getting more stable
 ➡ base library work in progress
 ➡ current implementation providing JVM and C backends

 ➡ Basic analysis tools available

 ➡ Felix
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Conclusion
Algebraic effects and Types as 1st class features 
 ➡ complement one another surprisingly well
 ➡ effects encapsulate non-functional aspects

● mutability
● i/o
● exceptions

 ➡ have a look, get involved!

 🦣 @fuzion@types.pl
 @FuzionLang🐦

https://flang.dev
github.com/tokiwa-software/fuzion
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