
Algebraic Effects and Types

as First-Class Features in the Fuzion Language

Fridtjof Siebert
Tokiwa Software GmbH

FOSDEM, 4. Feb 2023, Brussels

FOSDEM’23: Algebraic Effects and Types in Fuzion2

Who is this guy?
Fridtjof Siebert

Email: siebert@tokiwa.software
github: fridis
twitter: @fridi_s

‘90-‘94 AmigaOberon, AMOK PD
‘97 FEC Eiffel Sparc / Solaris
‘98-‘99 OSF: TurboJ Java Compiler
‘00-‘01 PhD on real-time GC
‘02-‘19 JamaicaVM real-time JVM based on

CLASSSPATH / OpenJDK,
VeriFlux static analysis tool

‘20-… Fuzion
‘21-… Tokiwa Software

FOSDEM’23: Algebraic Effects and Types in Fuzion3

Motivation: Fuzion Language
Many languages overloaded with concepts like classes,
methods, interfaces, constructors, traits, records, structs,
packages, values, …

 ➡ Fuzion has one concept: a feature
Today’s compilers and tools are more powerful

 ➡ Tools make better decisions
Systems are safety-critical

 ➡ we need to ensure correctness

FOSDEM’23: Algebraic Effects and Types in Fuzion4

Fuzion Resources
Fuzion available
 ➡ sources: github.com/tokiwa-software/fuzion

FOSDEM’23: Algebraic Effects and Types in Fuzion5

Fuzion Resources
Fuzion available
 ➡ sources: github.com/tokiwa-software/fuzion
 ➡ Website: flang.dev

● tutorial
● design
● examples
● ...

FOSDEM’23: Algebraic Effects and Types in Fuzion6

Backing Company

 ➡ supports development of Fuzion

 ➡ currently four employees

 ➡ hiring

 ➡ searching for funding

FOSDEM’23: Algebraic Effects and Types in Fuzion7

This Talk
Complementarity of Effects and Types

 ➡ Algebraic Effects for Fuzion

 ➡ Types as first-class features

 ➡ Types used to name Effects

FOSDEM’23: Algebraic Effects and Types in Fuzion8

Fuzion Effects
Fuzion Features are pure functions

 ➡ no mutation of data, no side-effects
Effects are used to model non-functional aspects

 ➡ state changes

 ➡ I/O

 ➡ thread communication

 ➡ exceptions

FOSDEM’23: Algebraic Effects and Types in Fuzion9

Algebraic Effects
Definition

 ➡ an algebraic effect is a set of operations
● read, get_time, panic, log, …
● operations often model a non-functional effect

 ➡ operations may resume or abort

 ➡ an effect’s operations may be implemented by different handlers

 ➡ to execute code that uses an effect, a corresponding
 handler must be installed

FOSDEM’23: Algebraic Effects and Types in Fuzion10

Fuzion Effects
Static analysis verifies effects

 ➡ Static analysis determines all effects

 ➡ library code must list all effects

 ➡ unexpected effects are a compile-time error

FOSDEM’23: Algebraic Effects and Types in Fuzion11

Fuzion Effects Example
Hello World:
 hello_world ! io.out =>
 say "hello world!"

 hello_world

FOSDEM’23: Algebraic Effects and Types in Fuzion12

Fuzion Effects Example
Hello World:
 hello_world ! io.out =>
 say "hello world!"

 hello_world

> fz hw.fz

FOSDEM’23: Algebraic Effects and Types in Fuzion13

Fuzion Effects Example
Hello World:
 hello_world ! io.out =>
 say "hello world!"

 hello_world

> fz hw.fz
hello world!
>

FOSDEM’23: Algebraic Effects and Types in Fuzion14

Fuzion Effects Example
Hello World:
 hello_world ! io.out =>
 say "hello world!"

 hello_world

> fz hw.fz
hello world!
> fz -effects hw.fz

FOSDEM’23: Algebraic Effects and Types in Fuzion15

Fuzion Effects Example
Hello World:
 hello_world ! io.out =>
 say "hello world!"

 hello_world

> fz hw.fz
hello world!
> fz -effects hw.fz
io.out
>

FOSDEM’23: Algebraic Effects and Types in Fuzion16

Fuzion Effects Example
Hello World:
 hello_world ! io.out =>
 say "hello world!"

 my_handler : io.Can_Print is
 print(s Any) unit is
 io.err.print (($s).replace "!" "!!!11!")

 io.out my_handler ()->hello_world

FOSDEM’23: Algebraic Effects and Types in Fuzion17

Fuzion Effects Example
Hello World:
 hello_world ! io.out =>
 say "hello world!"

 my_handler : io.Can_Print is
 print(s Any) unit is
 io.err.print (($s).replace "!" "!!!11!")

 io.out my_handler ()->hello_world

> fz hw.fz
hello world!!!11!
>

FOSDEM’23: Algebraic Effects and Types in Fuzion18

Fuzion Effects Example
Hello World:
 hello_world ! io.out =>
 say "hello world!"

 my_handler : io.Can_Print is
 print(s Any) unit is
 io.err.print (($s).replace "!" "!!!11!")

 io.out my_handler ()->hello_world

> fz hw.fz
hello world!!!11!
> fz -effects hw.fz
io.err
>

FOSDEM’23: Algebraic Effects and Types in Fuzion19

Types as First-Class Features

FOSDEM’23: Algebraic Effects and Types in Fuzion20

Types as First-Class Features
Generics in Java
 <T> void show_number(T a)
 {
 System.out.println("a is " + a);
 }

FOSDEM’23: Algebraic Effects and Types in Fuzion21

Types as First-Class Features
Type parameters in Fuzion
 show_number(T type,
 a T) =>
 say "a is $a"

Generics in Java
 <T> void show_number(T a)
 {
 System.out.println("a is " + a);
 }

FOSDEM’23: Algebraic Effects and Types in Fuzion22

Types as First-Class Features
Type parameters in Fuzion
 show_number(T type,
 a T) =>
 say "a is $a"

>

FOSDEM’23: Algebraic Effects and Types in Fuzion23

Types as First-Class Features
Type parameters in Fuzion
 show_number(T type,
 a T) =>
 say "a is $a"

 show_number i32 1234
 show_number f64 3.14

>

FOSDEM’23: Algebraic Effects and Types in Fuzion24

Types as First-Class Features
Type parameters in Fuzion
 show_number(T type,
 a T) =>
 say "a is $a"

 show_number i32 1234
 show_number f64 3.14

> fz types.fz

FOSDEM’23: Algebraic Effects and Types in Fuzion25

Types as First-Class Features
Type parameters in Fuzion
 show_number(T type,
 a T) =>
 say "a is $a"

 show_number i32 1234
 show_number f64 3.14

> fz types.fz
a is 1234
a is 3.14
>

FOSDEM’23: Algebraic Effects and Types in Fuzion26

Types as First-Class Features
Type inference
 show_number(T type,
 a T) =>
 say "a is $a"

 show_number i32 1234
 show_number f64 3.14

> fz types.fz
a is 1234
a is 3.14
>

FOSDEM’23: Algebraic Effects and Types in Fuzion27

Types as First-Class Features
Type inference
 show_number(T type,
 a T) =>
 say "a is $a"

 show_number 1234
 show_number 3.14

>

FOSDEM’23: Algebraic Effects and Types in Fuzion28

Types as First-Class Features
Type constraints
 show_number(T type : numeric T,
 a T) =>
 say "a is $a"

 show_number 1234
 show_number 3.14

>

FOSDEM’23: Algebraic Effects and Types in Fuzion29

Types as First-Class Features
Type constraints
 show_number(T type : numeric T,
 a T) =>
 say "a is $a, twice is {a+a}"

 show_number 1234
 show_number 3.14

>

FOSDEM’23: Algebraic Effects and Types in Fuzion30

Types as First-Class Features
Type constraints
 show_number(T type : numeric T,
 a T) =>
 say "a is $a, twice is {a+a}"

 show_number 1234
 show_number 3.14

> fz types.fz
a is 1234, twice is 2468
a is 3.14, twice is 6.28
>

FOSDEM’23: Algebraic Effects and Types in Fuzion31

Types as First-Class Features
Type values
 show_number(T type : numeric T,
 a T) =>
 say "a is $a of type {T.name}"

 show_number 1234
 show_number 3.14

>

FOSDEM’23: Algebraic Effects and Types in Fuzion32

Types as First-Class Features
Type values
 show_number(T type : numeric T,
 a T) =>
 say "a is $a of type {T.name}"

 show_number 1234
 show_number 3.14

> fz types.fz
a is 1234 of type i32
a is 3.14 of type f64
>

FOSDEM’23: Algebraic Effects and Types in Fuzion33

Types as First-Class Features
Type with user defined features
 sum_of(T type : numeric T,
 l list T) =>

FOSDEM’23: Algebraic Effects and Types in Fuzion34

Types as First-Class Features
Type with user defined features
 sum_of(T type : numeric T,
 l list T) =>
 l ? nil =>
 | c Cons =>

FOSDEM’23: Algebraic Effects and Types in Fuzion35

Types as First-Class Features
Type with user defined features
 sum_of(T type : numeric T,
 l list T) =>
 l ? nil =>
 | c Cons => c.head + sum_of c.tail

FOSDEM’23: Algebraic Effects and Types in Fuzion36

Types as First-Class Features
Type with user defined features
 sum_of(T type : numeric T,
 l list T) =>
 l ? nil =>
 | c Cons => c.head + sum_of c.tail

FOSDEM’23: Algebraic Effects and Types in Fuzion37

Types as First-Class Features
Type with user defined features
 sum_of(T type : numeric T,
 l list T) =>
 l ? nil => T.zero
 | c Cons => c.head + sum_of c.tail

FOSDEM’23: Algebraic Effects and Types in Fuzion38

Types as First-Class Features
Type with user defined features
 sum_of(T type : numeric T,
 l list T) =>
 l ? nil => T.zero
 | c Cons => c.head + sum_of c.tail

 numeric is
 type.zero numeric.this.type is abstract

FOSDEM’23: Algebraic Effects and Types in Fuzion39

Types as First-Class Features
Type with user defined features
 sum_of(T type : numeric T,
 l list T) =>
 l ? nil => T.zero
 | c Cons => c.head + sum_of c.tail

 numeric is
 type.zero numeric.this.type is abstract
 i32 : numeric is
 type.zero i32 is 0

FOSDEM’23: Algebraic Effects and Types in Fuzion40

Types as First-Class Features
Type with user defined features
 sum_of(T type : numeric T,
 l list T) =>
 l ? nil => T.zero
 | c Cons => c.head + sum_of c.tail

FOSDEM’23: Algebraic Effects and Types in Fuzion41

Types as First-Class Features
Type with user defined features
 sum_of(T type : numeric T,
 l list T) =>
 l ? nil => T.zero
 | c Cons => c.head + sum_of c.tail

 say (sum_of [3.14159, 2.71828].as_list)
 say (sum_of [1 ⁄ 3, 1 ⁄ 4].as_list)
 say (sum_of f64 nil)
 say (sum_of (fraction u8) nil)

FOSDEM’23: Algebraic Effects and Types in Fuzion42

Types as First-Class Features
Type with user defined features
 sum_of(T type : numeric T,
 l list T) =>
 l ? nil => T.zero
 | c Cons => c.head + sum_of c.tail

 say (sum_of [3.14159, 2.71828].as_list)
 say (sum_of [1 ⁄ 3, 1 ⁄ 4].as_list)
 say (sum_of f64 nil)
 say (sum_of (fraction u8) nil)

> fz types.fz

FOSDEM’23: Algebraic Effects and Types in Fuzion43

Types as First-Class Features
Type with user defined features
 sum_of(T type : numeric T,
 l list T) =>
 l ? nil => T.zero
 | c Cons => c.head + sum_of c.tail

 say (sum_of [3.14159, 2.71828].as_list)
 say (sum_of [1 ⁄ 3, 1 ⁄ 4].as_list)
 say (sum_of f64 nil)
 say (sum_of (fraction u8) nil)

> fz types.fz
5.85987
7⁄12
0.0
0⁄1

FOSDEM’23: Algebraic Effects and Types in Fuzion44

Types as Named Effects
Example: Simple linked ring

 ➡ Creation of a linked ring requires mutation

 ➡ Any calculation using ring therefore uses mutate effect

 ➡ But feature may still be pure if mutation affects only
 temporary local state

FOSDEM’23: Algebraic Effects and Types in Fuzion45

Types as Named Effects

FOSDEM’23: Algebraic Effects and Types in Fuzion46

Types as Named Effects
Ring using global mutate effect

FOSDEM’23: Algebraic Effects and Types in Fuzion47

Types as Named Effects
Ring using global mutate effect
 Ring(data String,
 old option Ring) ref is
 last Ring := (old ? nil => Ring.this
 | r Ring => r.last)
 next := mut (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

FOSDEM’23: Algebraic Effects and Types in Fuzion48

Types as Named Effects
Ring using global mutate effect
 Ring(data String,
 old option Ring) ref is
 last Ring := (old ? nil => Ring.this
 | r Ring => r.last)
 next := mut (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

FOSDEM’23: Algebraic Effects and Types in Fuzion49

Types as Named Effects
Ring using global mutate effect
 Ring(data String,
 old option Ring) ref is
 last Ring := (old ? nil => Ring.this
 | r Ring => r.last)
 next := mut (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 demo =>
 r := Ring "A" (Ring "B" (Ring "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 demo

> fz demo.fz

FOSDEM’23: Algebraic Effects and Types in Fuzion50

Types as Named Effects
Ring using global mutate effect
 Ring(data String,
 old option Ring) ref is
 last Ring := (old ? nil => Ring.this
 | r Ring => r.last)
 next := mut (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 demo =>
 r := Ring "A" (Ring "B" (Ring "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 demo

> fz demo.fz
A B C A B C A B C A
>

FOSDEM’23: Algebraic Effects and Types in Fuzion51

Types as Named Effects
Ring using global mutate effect
 Ring(data String,
 old option Ring) ref is
 last Ring := (old ? nil => Ring.this
 | r Ring => r.last)
 next := mut (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 demo =>
 r := Ring "A" (Ring "B" (Ring "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 demo

> fz demo.fz
A B C A B C A B C A
> fz -effects demo.fz

FOSDEM’23: Algebraic Effects and Types in Fuzion52

Types as Named Effects
Ring using global mutate effect
 Ring(data String,
 old option Ring) ref is
 last Ring := (old ? nil => Ring.this
 | r Ring => r.last)
 next := mut (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 demo =>
 r := Ring "A" (Ring "B" (Ring "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 demo

> fz demo.fz
A B C A B C A B C A
> fz -effects demo.fz
exit
io.err
io.out
mutate
panic
>

FOSDEM’23: Algebraic Effects and Types in Fuzion53

Types as Named Effects
Ring using local mutability
 Ring(data String,
 old option Ring) ref is
 last Ring := (old ? nil => Ring.this
 | r Ring => r.last)
 next := mut (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 demo =>
 r := Ring "A" (Ring "B" (Ring "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 demo

>

FOSDEM’23: Algebraic Effects and Types in Fuzion54

Types as Named Effects
Ring using local mutability
 Ring(
 data String,
 old option Ring) ref is
 last Ring := (old ? nil => Ring.this
 | r Ring => r.last)
 next := mut (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 demo =>
 r := Ring "A" (Ring "B" (Ring "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 demo

>

FOSDEM’23: Algebraic Effects and Types in Fuzion55

Types as Named Effects
Ring using local mutability
 Ring(M type : mutate,
 data String,
 old option Ring) ref is
 last Ring := (old ? nil => Ring.this
 | r Ring => r.last)
 next := mut (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 demo =>
 r := Ring "A" (Ring "B" (Ring "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 demo

>

FOSDEM’23: Algebraic Effects and Types in Fuzion56

Types as Named Effects
Ring using local mutability
 Ring(M type : mutate,
 data String,
 old option (Ring M)) ref is
 last Ring M := (old ? nil => Ring.this
 | r Ring => r.last)
 next := mut (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 demo =>
 r := Ring "A" (Ring "B" (Ring "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 demo

>

FOSDEM’23: Algebraic Effects and Types in Fuzion57

Types as Named Effects
Ring using local mutability
 Ring(M type : mutate,
 data String,
 old option (Ring M)) ref is
 last Ring M := (old ? nil => Ring.this
 | r Ring => r.last)
 next := mut (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 demo =>
 r := Ring "A" (Ring "B" (Ring "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 demo

>

FOSDEM’23: Algebraic Effects and Types in Fuzion58

Types as Named Effects
Ring using local mutability
 Ring(M type : mutate,
 data String,
 old option (Ring M)) ref is
 last Ring M := (old ? nil => Ring.this
 | r Ring => r.last)
 next := M.env.new (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 demo =>
 r := Ring "A" (Ring "B" (Ring "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 demo

>

FOSDEM’23: Algebraic Effects and Types in Fuzion59

Types as Named Effects
Ring using local mutability
 Ring(M type : mutate,
 data String,
 old option (Ring M)) ref is
 last Ring M := (old ? nil => Ring.this
 | r Ring => r.last)
 next := M.env.new (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 mm : mutate is
 demo =>
 r := Ring "A" (Ring "B" (Ring "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 demo

>

FOSDEM’23: Algebraic Effects and Types in Fuzion60

Types as Named Effects
Ring using local mutability
 Ring(M type : mutate,
 data String,
 old option (Ring M)) ref is
 last Ring M := (old ? nil => Ring.this
 | r Ring => r.last)
 next := M.env.new (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 mm : mutate is
 demo =>
 r := Ring "A" (Ring "B" (Ring mm "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 demo

>

FOSDEM’23: Algebraic Effects and Types in Fuzion61

Types as Named Effects
Ring using local mutability
 Ring(M type : mutate,
 data String,
 old option (Ring M)) ref is
 last Ring M := (old ? nil => Ring.this
 | r Ring => r.last)
 next := M.env.new (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 mm : mutate is
 demo =>
 r := Ring "A" (Ring "B" (Ring mm "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 mm.use ()->demo

>

FOSDEM’23: Algebraic Effects and Types in Fuzion62

Types as Named Effects
Ring using local mutability
 Ring(M type : mutate,
 data String,
 old option (Ring M)) ref is
 last Ring M := (old ? nil => Ring.this
 | r Ring => r.last)
 next := M.env.new (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 mm : mutate is
 demo =>
 r := Ring "A" (Ring "B" (Ring mm "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 mm.use ()->demo

> fz demo.fz

FOSDEM’23: Algebraic Effects and Types in Fuzion63

Types as Named Effects
Ring using local mutability
 Ring(M type : mutate,
 data String,
 old option (Ring M)) ref is
 last Ring M := (old ? nil => Ring.this
 | r Ring => r.last)
 next := M.env.new (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 mm : mutate is
 demo =>
 r := Ring "A" (Ring "B" (Ring mm "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 mm.use ()->demo

> fz demo.fz
A B C A B C A B C A

FOSDEM’23: Algebraic Effects and Types in Fuzion64

Types as Named Effects
Ring using local mutability
 Ring(M type : mutate,
 data String,
 old option (Ring M)) ref is
 last Ring M := (old ? nil => Ring.this
 | r Ring => r.last)
 next := M.env.new (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 mm : mutate is
 demo =>
 r := Ring "A" (Ring "B" (Ring mm "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 mm.use ()->demo

> fz demo.fz
A B C A B C A B C A
> fz -effects demo.fz

FOSDEM’23: Algebraic Effects and Types in Fuzion65

Types as Named Effects
Ring using local mutability
 Ring(M type : mutate,
 data String,
 old option (Ring M)) ref is
 last Ring M := (old ? nil => Ring.this
 | r Ring => r.last)
 next := M.env.new (old ? nil => Ring.this
 | r Ring => r)
 last.next <- Ring.this

 mm : mutate is
 demo =>
 r := Ring "A" (Ring "B" (Ring mm "C" nil))
 for n := r, n.next.get; i in 1..10 do
 yak "{n.data} "
 mm.use ()->demo

> fz demo.fz
A B C A B C A B C A
> fz -effects demo.fz
exit
io.err
io.out
panic
>

FOSDEM’23: Algebraic Effects and Types in Fuzion66

Fuzion: Status
Fuzion still under development
 ➡ language definition slowly getting more stable
 ➡ base library work in progress
 ➡ current implementation providing JVM and C backends

 ➡ Basic analysis tools available

FOSDEM’23: Algebraic Effects and Types in Fuzion67

Fuzion: Status
Fuzion still under development
 ➡ language definition slowly getting more stable
 ➡ base library work in progress
 ➡ current implementation providing JVM and C backends

 ➡ Basic analysis tools available

 ➡ Felix

FOSDEM’23: Algebraic Effects and Types in Fuzion68

Conclusion
Algebraic effects and Types as 1st class features
 ➡ complement one another surprisingly well
 ➡ effects encapsulate non-functional aspects

● mutability
● i/o
● exceptions

 ➡ have a look, get involved!

 🦣 @fuzion@types.pl
 @FuzionLang🐦

https://flang.dev
github.com/tokiwa-software/fuzion

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68

