
Teaching machines to handle bugs and test
Firefox more efficiently
Using ML to automate bug management, test selection, and more.

FOSDEM 2023

Marco Castelluccio <mcastelluccio@mozilla.com>

My dogs

2

Luna Nika

• Hundreds of bug reports and feature requests per
day

• 1’813’700 bug reports at this time!

• We release every 4 weeks with thousands of
changes

• 13 major releases during 2022

• 45 minor releases

The Firefox Scale

3

• One of the biggest and most complex software

• With legacy and tech debt (Netscape was open sourced 25 years ago)

• 800’000 commits made by 9000 contributors representing 25’000’000 lines of
code

• 37500 commits last year

• 1000 unique contributors last year

The Firefox Scale

4

The Firefox Scale

5

TODO
openhub

6

Where it all started

It’s not a bug,
it’s a feature!

Part I

It’s not a bug, it’s a feature!

The Why

• No way to differentiate between defects and
feature requests

• Quality metrics, e.g. how many defects are
found in a given release

• Harder to improve workflows

It’s not a bug, it’s a feature

7

The Result

It’s not a bug, it’s a feature

8

• Introduction of a new type field

The How

• ~2500 manually labelled bugs + ~9000 labelled with heuristics

It’s not a bug, it’s a feature

9

~93% accuracy

The Result

It’s not a bug, it’s a feature

10

🐞 🐞
bug

https://github.com/mozilla/bugbug

bug

https://github.com/mozilla/bugbug

11

From 7 days to 7
seconds

Assigning
components
faster

Part II

It’s not a bug, it’s a feature!

Assigning components faster

The Why

• Use Product and Component to group bugs

• Manually done by volunteers and developers

Assigning components faster

12

The How

Assigning components faster

13

• Large curated dataset: two decades worth of bugs!

• Roll-back of the bug history to get back to the initial
state

• Reduction of dataset to meaningful components

The How

Assigning components faster

14

• Use confidence level to only assign component when we are sure enough

• Control precision and recall by tweaking the threshold

The Result

Assigning components faster

15

• Average time to assign down from ~1 week to a few seconds

• ~20000 bugs autotriaged

• Extended to help triage web compatibility issues from webcompat.com (filed on GitHub)

https://webcompat.com/

16

About time

Building up
the
architecture

Part III

It’s not a bug, it’s a feature!

Assigning components faster

Building up the architecture

The Pipeline

Building up the architecture

17

18

Cause nobody likes
spam

Rooting out
spam

Part IV

It’s not a bug, it’s a feature!

Rooting out spam

Assigning components faster

Building up the architecture

19

Where it all started

It’s not a bug,
it’s a feature!

Part I

It’s not a bug, it’s a feature!

Rooting out spam

Assigning components faster

Can we test more efficiently?

Building up the architecture

20

From 7 days to 7
seconds

Assigning
components
faster

Part II

It’s not a bug, it’s a feature!

Rooting out spam

Assigning components faster

Can we test more efficiently?

Predicting defects

Building up the architecture

The Why

Rooting out spam

21

• Spammers trying to increase links to their websites

• University students learning how to file bugs :(

• Built by a contributor, Ayush Shridhar

1700648 - Firefox Keeps on Crashing Netflix

https://bugzilla.mozilla.org/show_bug.cgi?id=1700648

1675284 - Lockwise does not report website breaches or alerts

https://bugzilla.mozilla.org/show_bug.cgi?id=1675284

1703459 - Lockwise does not report website breaches or alerts

https://bugzilla.mozilla.org/show_bug.cgi?id=1703459

25

Can we test more efficiently?

Yes, we can

Part V

Mozilla’s CI

Can we test more efficiently?

26

● try - On-demand CI

● autoland - Runs a subset of tests

● mozilla-central - Firefox Nightly is built from here, runs the full
set of tests, merges from autoland + urgent fixes

Mozilla’s CI

Can we test more efficiently?

27

● Around 100’000 unique test files

● Over 150 unique configurations, from combinations of:
○ Each major OS
○ High-level Firefox configurations (e.g. old style engine / new style engine)
○ Debug / Opt
○ ASAN / TSAN / Coverage / …

● More than 300 pushes per day, with the average full push taking 1500
hours
○ 300 machine years per month
○ ~1 million machines per month

● Running all means running 2.3 billion test files per day!

Subset of test tasks

Can we test more efficiently?

28

The Difficulties

Can we test more efficiently?

29

● Hard to pinpoint the cause of a given test failure
○ Lots of tests and lots of intermittent (flaky) tests
○ Not all tests are run on all pushes
○ We have sheriffs watching the CI, but human errors exist

https://twitter.com/mozsheriffmemes

https://twitter.com/mozsheriffmemes

Patch Characteristics

Can we test more efficiently?

30

● To link tests to patches, we need to analyze them

● mercurial for authorship info

● rust-parsepatch to parse patches efficiently

● rust-code-analysis to analyze source code (research partnership
with Politecnico di Torino)

https://github.com/mozilla/rust-parsepatch
https://github.com/mozilla/rust-code-analysis

The ML model

Can we test more efficiently?

31

● Avoid huge multi-label model (where each test is a label): input is
tuple TEST / PATCH, label is “fail” / “not fail”

● Features from both test, patch and test / patch, e.g.:
○ Past failures when the same files were touched
○ Distance from source files to test files
○ How often source files were modified together with test files

● Use frequent itemset mining to remove test redundancies

32

Predicting defects

Can we?

Part VI

The Why

Predicting defects

33

● Reduce regressions, by detecting riskier patches to scrutinize
more

● Reduce time spent by reviewers on less risky patches

● Trigger risk-control operations for risky patches (e.g. code
coverage)

● NOTE: AI in support of developers, will never replace a real
reviewer

Finding patches causing regressions

Predicting defects

34

● 5’348 links between bug-introducing and
bug-fixing commit-sets (totaling 24’089
commits)

● Research study on dataset and SZZ in
collaboration with University of Zurich

microannotate

Predicting defects

35

Result

Predicting defects

36

Function-level Result

Predicting defects

37

38

Privacy-friendly translations

Traduzioni con rispetto per la privacy*

Part VII

* this was automatically translated using Firefox Translate.

The Why

Privacy-friendly translations

39

● Translation models improved a lot in recent times

● Current cloud-based services do not offer the privacy
guarantees that we like to offer in Firefox

● European Union 󰎾 funded project to investigate client-side
private translation capabilities

Current Status

Privacy-friendly translations

40

• Available as an extension
• Firefox Translations – Get this Extension for 🦊 Firefox

• Languages supported
• Spanish, Estonian, English, German, Czech, Bulgarian, Portuguese, Italian,

French, Polish

• In development
• Russian, Persian (Farsi), Icelandic, Norwegian Nynorsk, Norwegian Bokmål,

Ukrainian, Dutch

https://addons.mozilla.org/firefox/addon/firefox-translations/

How Does It Work

Privacy-friendly translations

41

● Use machine learning on the client side to do a local translation

● All the data remains on the system

● Firefox will download the model from our servers - just for the
languages that you need

Open Datasets

Privacy-friendly translations

42

Data Cleaning and Augmentation

Privacy-friendly translations

43

● Basic data cleaning + ML-based detection of bad sentence pairs
(bicleaner)

● Back-translation for data augmentation from monolingual data
○ Translate target to source
○ Add pair “noisy translated source” -> “good target”

󰏢 Mi piace
mangiare

󰏃 J’aime manger

󰏢 Amo mangiare

https://github.com/bitextor/bicleaner

Model Training and Compression

Privacy-friendly translations

44

● Training of a large model

● Compression using knowledge distillation into a smaller one

● Quantization (float32 -> int8) for further compression and perf
improvement

Firefox Integration via WASM

Privacy-friendly translations

45

● NMT engine compiled to WebAssembly

● Using SIMD instructions
○ 10x perf improvement

● Engine and models downloaded and updated on demand

Demo

Privacy-friendly translations

46

How Can You Help

Privacy-friendly translations

47

● Know any dataset that we could use?

● Interested in contributing in building a great new feature in Firefox or
adding support for your language?

● Come and talk to us at our booth!

My dogs (now grown)

48

Thank You

Summary

50

Building up the
architecture

Assigning
components faster

It’s not a bug, it’s a
feature!

Privacy-friendly
translations

Predicting defects

Can we test more
efficiently?

3.

2.

1.

7.

6.

5.

Rooting out spam4.

