
An introduction to Apache
Beam
For streaming analytics

FOSDEM 2023
Brussels, Feb 4th

Israel Herraiz

 @herraiz

Strategic Cloud Engineer

Apache Beam

What is Apache Beam?

Many
runtimes

One
pipeline

Multiple
modes

Beam Model

Language
SDKs

Batch Proccessing

Streaming Proccessing

What is Apache Beam?

SDKs Runners

Dataflow

Twister2

Direct
Runner

The problem with streaming

Data streams: unbounded data sources

10:008:00 20:0018:0016:0014:0012:0011:009:00 21:0019:0017:0015:0013:00

Arrival out of order

8:00

8:00
8:00

10:008:00 20:0018:0016:0014:0012:0011:009:00 21:0019:0017:0015:0013:00

Micro-batching does not solve the problem with out of order

13:00 14:008:00 9:00 10:00 11:00 12:00 Processing
Time

∑ ∑ ∑ ∑ ∑ ∑ ∑8:00 8:00

The watermark

Event time vs. processing time define the watermark

In any data processing system:

● There is a certain amount of lag between:

○ The event time, when a data event
occurs (determined by the timestamp on
the data element itself).

○ The processing time, when a data
element gets processed at any stage in a
pipeline (determined by the clock on the
processing system).

● There are no guarantees that data events will
appear in a pipeline in the same order that they
were generated.

event time

pr
oc

es
si

ng
 ti

m
e

ideal

reality

In other words: event time vs. processing time in Star Wars

Event Time

Processing Time

1977 1980 1983 1999 2002 2005 2015 2017 2019

Episode I

The Phantom
Menace

Episode II

Attack of The
Clones

Episode III

Revenge of
the Sith

Episode IV

A new Hope

Episode V

The Empire
Strikes Back

Episode VI

Return of the
Jedi

Episode VII

The Force
Awakens

Episode VIII

The Last Jedi

Episode IX

The Rise of
Skywalker

Source: Introduction to Apache Flink by Ellen Friedman, Kostas Tzoumas

https://learning.oreilly.com/library/view/introduction-to-apache/9781491977132/

Dealing with out of order:
Windows

Answering four questions

What results are calculated?

Where in event time are results calculated?

When in processing time are results materialized?

How do refinements of results relate?

The Beam Model: What is Being Computed?

PCollection<KV<String, Integer>> scores = input

 .apply(Sum.integersPerKey());

The Beam Model: What is Being Computed?

The Beam Model: Where in event time?

PCollection<KV<String, Integer>> scores = input

 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))

 .apply(Sum.integersPerKey());

The Beam Model: Where in event time?

The Beam Model: When in processing time?

PCollection<KV<String, Integer>> scores = input

 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))

 .triggering(AtWatermark()))

 .apply(Sum.integersPerKey());

The Beam Model: When in processing time?

The Beam Model: How do we refine/recalculate?

PCollection<KV<String, Integer>> scores = input

 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))

 .triggering(AtWatermark()

 .withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))

 .withLateFirings(AtCount(1)))

 .accumulatingFiredPanes())

 .apply(Sum.integersPerKey());

The Beam Model: How do we refine/recalculate?

beam.apache.org/get-started/mobile-gaming-example/

https://beam.apache.org/get-started/mobile-gaming-example/

Dealing with out of order:
Stateful functions

Stateful processing

Persistent mutable state

It is partitioned by key and window

It can be read and written during
the processing of each element

The input needs to be a
PCollection of KV

ParDo

State variables and timers: example

ParDo

@ProcessElement

External
Service

State

buffer

count

@OnTimer

Event-time

Processing-time

call back when
data is stale

call back at expiry

beam.apache.org/blog/timely-processing/

State & timers patterns:
youtube.com/watch?v=RQjJ0BDKI_k

Using the Timer &State API to solve times series use cases
youtube.com/watch?v=Q_v5Zsjuuzg

https://beam.apache.org/blog/timely-processing/
https://www.youtube.com/watch?v=RQjJ0BDKI_k
https://www.youtube.com/watch?v=Q_v5Zsjuuzg

Other goodies in streaming:
ML inference at scale

ML inference

Local and remote inference

Resource hints: use GPU, specify memory requirements

beam.apache.org/documentation/sdks/python-machine-learning/
beam.apache.org/documentation/ml/overview/

https://beam.apache.org/documentation/sdks/python-machine-learning/
https://beam.apache.org/documentation/ml/overview/

Other goodies in streaming:
In Java (or lang of choice) too!

Cross language transforms: use any transform from any SDK in any other SDK.

For instance, RunInference in Java

beam.apache.org/releases/javadoc/current/org/apache/beam/sdk/extensions/python/transforms/RunInference.html

beam.apache.org/documentation/programming-guide/#multi-language-pipelines

https://beam.apache.org/releases/javadoc/current/org/apache/beam/sdk/extensions/python/transforms/RunInference.html
https://beam.apache.org/documentation/programming-guide/#multi-language-pipelines

Recommended readings
and links

The book on
Streaming Systems
Tyler Akidau, Slava Chernyak, Reuven Lax

http://streamingsystems.net/

http://streamingsystems.net/

beamcollege.dev/ beamsummit.org/

beam.apache.org/

* this presentation was prepared with some of the Beam community materials available at
https://beam.apache.org/community/presentation-materials/

https://beamcollege.dev/
https://beamsummit.org/
https://beam.apache.org/documentation/programming-guide/
https://beam.apache.org/community/presentation-materials/

