
Ingesting over a million rows per second
on a single instance
Time-series processing using

Javier Ramirez, Developer Advocate at QuestDB

@supercoco9

Fast and Streaming Data Devroom

We would like to be known for:

● Performance
○ Better performance with smaller machines

● Developer Experience

● Proudly Open Source (Apache 2.0)

Not all big (or fast)
data problems are the

same

Do you have a time-series problem? (1/2)

● Most of your queries are scoped to a time range

● You mostly insert data. You rarely update or delete individual rows

● It is likely you write data more frequently than you read data

● Since data keeps growing, you will very likely end up with much bigger

data than your typical operational database would be happy with

● You often need to resample your data for aggregations/analytics

● You often need to align timestamps from multiple data series

Do you have a time-series problem? (2/2)

● You typically access recent/fresh data rather than older data

● But still want to keep older data around for occasional analytics

● Your data origin might experience bursts or lag, but keeping the

correct order of events is critical for you

● But you typically request your reads to show data captured recently

● Both ingestion and querying speed are critical for your business

Some time-series demo queries

https://demo.questdb.io/

https://demo.questdb.io/

Ingesting over 1 million time
series per second on a single
instance

9

All benchmarks are lies (but they give us a ballpark)

Ingesting over 1.4 million rows per second (using 5 CPU threads)
https://questdb.io/blog/2021/05/10/questdb-release-6-0-tsbs-benchmark/

While running queries scanning over 4 billion rows per second (16 CPU threads)
https://questdb.io/blog/2022/05/26/query-benchmark-questdb-versus-clickhouse-timescale/

https://questdb.io/blog/2021/05/10/questdb-release-6-0-tsbs-benchmark/
https://questdb.io/blog/2022/05/26/query-benchmark-questdb-versus-clickhouse-timescale/

Technical decisions and trade offs we made
to get here

We can make many
assumptions about the shape
of the data and usage patterns

Written FROM SCRATCH for performant time-series

● Using JAVA unsafe mode, with zero GC and sharing memory with C++

● Writing our own IO functions, with native memory networking and zero GC

● Own implementation of String and other common classes, to avoid
overhead

● Own implementation of Logger, for speed and to avoid interpolations

Down to the nanosecond

Benchmark Mode Cnt Score Error Units
LogBenchmark.testLogOneIntBlocking avgt 2 265.391 ns/op
LogBenchmark.testLogOneInt avgt 2 82.985 ns/op
LogBenchmark.testLogOneIntDisabled avgt 2 0.661 ns/op
Log4jBenchmark.testLogOneInt avgt 2 877.266 ns/op
Log4jBenchmark.testLogOneIntDisabled avgt 2 1.368 ns/op

https://github.com/questdb/questdb

https://questdb.io/cloud/

https://github.com/questdb/questdb
https://questdb.io/cloud/

Quick recap

● Time-series problems can be hard

● QuestDB only does time-series

● Ingestion is done via official clients (or ILP over socket), queries are done via SQL

● QuestDB’s storage model makes ingestion very fast, and indices unnecessary

● We measure-implement-repeat continuously to improve performance

● All benchmark are lies, but if you like them take a look at

https://questdb.io/blog/tags/engineering/

https://questdb.io/blog/tags/engineering/

For more info, https://questdb.io and
https://demo.questdb.io

We 💕 contributions and ⭐ stars

github.com/questdb/questdb

THANKS!

Javier Ramirez, Developer Advocate at QuestDB

@supercoco9

https://questdb.io
https://demo.questdb.io
http://github.com/questdb/questdb

