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We would like to be known for:

e Performance
o Better performance with smaller machines

e Developer Experience

e Proudly Open Source (Apache 2.0)



Not all big (or fast)
data problems are the
same



Do you have a time-series problem? (1/2)

Most of your queries are scoped to a time range

You mostly insert data. You rarely update or delete individual rows

It is likely you write data more frequently than you read data

Since data keeps growing, you will very likely end up with much bigger
data than your typical operational database would be happy with
You often need to resample your data for aggregations/analytics

You often need to align timestamps from multiple data series



Do you have a time-series problem? (2/2)

You typically access recent/fresh data rather than older data

But still want to keep older data around for occasional analytics
Your data origin might experience bursts or lag, but keeping the
correct order of events is critical for you

But you typically request your reads to show data captured recently

Both ingestion and querying speed are critical for your business



Some time-series demo queries


https://demo.questdb.io/

Ingesting over 1 million time
series per second on a single
Instance



| am dead inSides.

R

l* ¢




All benchmarks are lies (but they give us a ballpark)

Ingesting over 1.4 million rows per second (using 5 CPU threads)

While running queries scanning over 4 billion rows per second (16 CPU threads)


https://questdb.io/blog/2021/05/10/questdb-release-6-0-tsbs-benchmark/
https://questdb.io/blog/2022/05/26/query-benchmark-questdb-versus-clickhouse-timescale/
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Technical decisions and trade offs we made
to get here



We can make many
assumptions about the shape
of the data and usage patterns



Written FROM SCRATCH for performant time-series

Using JAVA unsafe mode, with zero GC and sharing memory with C++

Writing our own 10 functions, with native memory networking and zero GC

Own implementation of String and other common classes, to avoid
overhead

Own implementation of Logger, for speed and to avoid interpolations



Down to the nanosecond

Benchmark
LogBenchmark.testLogOneIntBlocking
LogBenchmark.testLogOneInt
LogBenchmark.testLogOneIntDisabled
Log4jBenchmark.testLogOneInt
Log4jBenchmark.testLogOneIntDisabled

Mode
avgt
avgt
avgt
avgt
avgt

N DNDNDNDN

Score
265.391
82.985
0.661
877.266
1.368

Error

Units
ns/op
ns/op
ns/op
ns/op
ns/op



QUESTDB'S APPROACH TO PERFORMANGE
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SELF-HOSTED IIII(I:IIII.Y MANAGED?



https://github.com/questdb/questdb
https://questdb.io/cloud/

Quick recap

e Time-series problems can be hard

e QuestDB only does time-series

e Ingestion is done via official clients (or ILP over socket), queries are done via SQL
e QuestDB's storage model makes ingestion very fast, and indices unnecessary

e We measure-implement-repeat continuously to improve performance

e Allbenchmark are lies, but if you like them take a look at


https://questdb.io/blog/tags/engineering/
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