FOSDEM?23

Brussels / & &5 February 2023

Fast and Streaming Data Devroom

Ingesting over a million rows per second

on a single instance

Time-series processing using (" QuestDB

Javier Ramirez, Developer Advocate at QuestDB
@supercoco?

O Search or jump Pull requests Issues Codespaces Marketplace Explore

B questdb / questdb Pubiic ®©Watch 116 ~ ¥ Fork 627 Stared 100k~

<> Code () Issues 301 11 Pullrequests 18) Discussions (® Actions [Projects 6 @© security |~ Insights

P master -} 19branches © 67 tags Goto file Add file ~ About

An open source time-series database for

@ trisolaris chore(ui): Update README.md (#2959) v 35b748¢ 1hourago O 3,925 commits fast ingest and SQL queries
" " #2] @ questdb.io
B github test(build): validate PR title validation rules (#2730) 3 months ago
W .idea chore(core): make java code formatter to apply method sorting (#271... 3 months ago o) (oY) Cpostores) (o) (datsbase
big-data time-series analytics <pp.
‘ M artifacts build: 6.6.2-SNAPSHOT 2 months ago
grafana postgresql simd
B8 benchmarks chore(wal): optimise WAL application (merge) to the table (#2922) last week low-latency financial-analysis tsdb
mc ci(build): fix snapshot pipeline (#2913) 3 weeks ago hacktoberfest time-series-database
questdb
B core chore(ilp): reduce Out Of Order introduced by ILP writing for WAL ta... 7 hours ago
M examples build: 6.7.1-SNAPSHOT 2weeksago | L Readme
& Apache-2.0 license
i ign docs(core): update readme queries (#2780) months ago
@ Code of conduct
B pkg/ami/marketplace chore(core): fix missing defaults for O3 min/max commit lag (#2918) 2 weeks ago 5 Security policy
B utis build: 6.7.1-SNAPSHOT 2 weeks ago ¥ 101k stars
® 116 watching
‘ M win6dsvc feat(core): deterministically deposit hs_err_pid files into db dire 6 months ago
¥ 627 forks
O .all-contributorsrc docs: add suconghou as a contributor for bug (#2383) 6 months ago
[git-blame-ignore-revs chore(build): git blame to ignore the reformatting commit (#2880) last month
Releases 60
O gitgnore feat(core): make partitions attached via soft link read-only, protect. 2 weeks ago
© 6.7 (Latest)
[CODEOWNERS chore: switch to team-based codeowners (#1754) last year 2 weeks ago
[CODE_OF_CONDUCT.md chore(docs): add Prettier formatting to project files (#1720) last year +59 releases
[CONTRIBUTING.md docs(core): add code formatting info to contributing guide (#2784) 2 months ago
O UCENSEtxt fix: license changed to Apache 2.0. Fixed #80 3 years ago Contributors 103
[} README.md chore(ui): Update README.md (#2959) 1 hour ago 0 ’ e oy '
-
[SECURITY.md docs(core): add SECURITY policy (#2629) 3 months ago f=3 'ﬁ
i
[examples.manifestyam! docs(ilp): add an example with auth, but without TLS (#2455) 5 months ago
+92 contributors
O pomxml build: 6.7.1-SNAPSHOT 2 weeks ago
Languages
= README.md 7

® Java890% ® C++73% @ C24%

‘ . :::mhcly\’ ® CMake 0.1%
~ QuestDB

o655

English | fai#eP3Z | MR | 4n | Italiano | Ykpaikicoka | Espafiol | Portugués | B4

QuestDB

We would like to be known for:

e Performance
o Better performance with smaller machines

e Developer Experience

e Proudly Open Source (Apache 2.0)

Not all big (or fast)
data problems are the
same

Do you have a time-series problem? (1/2)

Most of your queries are scoped to a time range

You mostly insert data. You rarely update or delete individual rows

It is likely you write data more frequently than you read data

Since data keeps growing, you will very likely end up with much bigger
data than your typical operational database would be happy with
You often need to resample your data for aggregations/analytics

You often need to align timestamps from multiple data series

Do you have a time-series problem? (2/2)

You typically access recent/fresh data rather than older data

But still want to keep older data around for occasional analytics
Your data origin might experience bursts or lag, but keeping the
correct order of events is critical for you

But you typically request your reads to show data captured recently

Both ingestion and querying speed are critical for your business

Some time-series demo queries

https://demo.questdb.io/

Ingesting over 1 million time
series per second on a single
Instance

| am dead inSides.

R

l* ¢

All benchmarks are lies (but they give us a ballpark)

Ingesting over 1.4 million rows per second (using 5 CPU threads)

While running queries scanning over 4 billion rows per second (16 CPU threads)

https://questdb.io/blog/2021/05/10/questdb-release-6-0-tsbs-benchmark/
https://questdb.io/blog/2022/05/26/query-benchmark-questdb-versus-clickhouse-timescale/

O Search or jump to... Pull requests Issues Codespaces Marketplace Explore

& timescale [tsbs Public ® Watch 46 ~ % Fork 233 ~ Starred 1k~

<> Code () Issues 52 19 Pullrequests 21 () Actions [Projects (@ Security |~ Insights

¥ master ~ # 15 branches © 0 tags Go to file Add file » <> Code ~ About
Time Series Benchmark Suite, a tool for
e puzpuzpuz Add QuestDB to makefile (#181) v bcceo13 on Jan 19, 2022 YO 769 commits comparing and evaluating databases for
time series data
.github/workflows Create go.yaml for GitHub workflow (#171) last year
benchmarking cassandra mongodb
cmd Questdb benchmark support (#157) last year T —— T
docs Questdb benchmark support (#157) last year
0 Readme
helm TSBS Docker and helm chart 2 years ago &5 MIT license
internal Questdb benchmark support (#157) last year v 1k stars
load Enable persisting ingestion/query benchmark results in a common fo... last year © 46 watching
% 233 forks
pkg Questdb benchmark support (#157) last year
scripts Questdb benchmark support (#157) last year
Releases
3 .gitignore Questdb benchmark support (#157) last year
No releases published
Y .travisyml Add multinode to master (#168) last year
[Dockerfile TSBS Docker and helm chart 2 years ago
Packages
[LICENSE Update copyright year to 2021 2 years ago
No packages published
[Makefile Add QuestDB to makefile (#181) last year

Technical decisions and trade offs we made
to get here

We can make many
assumptions about the shape
of the data and usage patterns

Written FROM SCRATCH for performant time-series

Using JAVA unsafe mode, with zero GC and sharing memory with C++

Writing our own 10 functions, with native memory networking and zero GC

Own implementation of String and other common classes, to avoid
overhead

Own implementation of Logger, for speed and to avoid interpolations

Down to the nanosecond

Benchmark
LogBenchmark.testLogOneIntBlocking
LogBenchmark.testLogOneInt
LogBenchmark.testLogOneIntDisabled
Log4jBenchmark.testLogOneInt
Log4jBenchmark.testLogOneIntDisabled

Mode
avgt
avgt
avgt
avgt
avgt

N DNDNDNDN

Score
265.391
82.985
0.661
877.266
1.368

Error

Units
ns/op
ns/op
ns/op
ns/op
ns/op

QUESTDB'S APPROACH TO PERFORMANGE

4 ?ﬂ

I WILL FIND YOU...
_AND | WILL QUICKEN YOU

SELF-HOSTED IIII(I:IIII.Y MANAGED?

https://github.com/questdb/questdb
https://questdb.io/cloud/

Quick recap

e Time-series problems can be hard

e QuestDB only does time-series

e Ingestion is done via official clients (or ILP over socket), queries are done via SQL
e QuestDB's storage model makes ingestion very fast, and indices unnecessary

e We measure-implement-repeat continuously to improve performance

e Allbenchmark are lies, but if you like them take a look at

https://questdb.io/blog/tags/engineering/

THANKS!

For more info, olgle

We @’ contributions and W stars

Javier Ramirez, Developer Advocate at QuestDB
@supercoco?

https://questdb.io
https://demo.questdb.io
http://github.com/questdb/questdb

