EROFS file system update
and its future

@ FOSDEM 23

Xiang Gao <xiang@kernel.org>

What’s EROFS? Why EROFS?

* EROFS stands for Enhanced Read-Only File System (originally started in late 2017), available since Linux 4.19.

* It’s designed to be a generic high-performance read-only filesystem with a simple but effective core on-disk format

design;

* It almost has the best performance among the current in-kernel read-only filesystems (as of v6.2);

* Kernel mountable as a seekable archival format replacement of traditional cpio and tar;

* Currently contributed by community lovers, Alibaba Cloud, ByteDance, Coolpad, Google, Huawei, OPPO, and more.

* Perfile LZ4 / LZMA (since 5.16) transparent data compression (as an option)

* Targeted for various high-performance read-only solutions:

System partitions & APEX for Android smartphone [1]
Other embedded systems (e.g. routers, 10T, ...)
LiveCDs (archiso, ...)

Container images (Nydus [2]) / app sandboxes

Al datasets

* Many useful features are actively under development [3]

Any suggestions or contributions are always welcome! L 4

[1] https://source.android.com/docs/core/architecture/kernel/erofs

[2] https://github.com/dragonflyoss/image-service

[3] https://lore.kernel.org/linux-fsdevel/YqZNJpgQ+xLSHBgK@debian/

.json, .xml, pubkey...

APEX
B apex_payload.img
r
system
Android Smartphones
metadata ===k fog=g
bootsfra | = % =~ [[—~r——

D 1 1

barll |

fooa] - i -

blobs1

blob data (local, network,

virtiofs, etc...)

RAFS v6 (EROFS-compatible) container images

https://source.android.com/docs/core/architecture/kernel/erofs
https://github.com/dragonflyoss/image-service
https://lore.kernel.org/linux-fsdevel/YqZNJpgQ+xLSHBqK@debian/

Use case: Android system partitions

* Android has several read-only partitions which behave as
system fireware, which means “Android core can only be
changed by way of an update”

* Benefits:

* easy for vendors to ship/distribute/keep original signing
(golden) images to each instance;

* easy to roll back to the original shipped state or do
Incremental updates;

* easy to check data corruption or do data recovery even in a
very low level (e.g. hardware);

* easy for real storage devices to do hardware write-protection;
* and more;

* Why introducing EROFS (3,7 Also APEXs and (even) APKs?

[1] https://www.usenix.org/conference/atc19/presentation/gao

https://www.usenix.org/conference/atc19/presentation/gao

Use case: Container images —— Nydus

Dragonfly Nydus is a user-space example which uses in-kernel EROFS to leverage its functionality to do

fast container image distribution like lazy pulling and data de-duplication across layers & images.

* Currently it can do lazy pulling for 1) Nydus/EROFS images, 2) (e)stargz imags and 3) original OCl images
with a minimal index (soci-like);

* For more details of Nydus itself, also see FOSDEM 23 Nydus Image Service for Confidential Containers
@ Confidential Computing devroom

An image format w/ advanced features:

Lazy loading
* Data deduplication
* Native or OCIvl compatible modes
* Encryption(in progress)

A readonly filesystem for containers
(runC/Kata/Kata CC), Al models and
software packages by:

Linux/MacOS FUSE
¢ Virtio-fs
EROFS with page sharing
User space library (in progress)

filesystem
directory

nydus-image

tar
decoder
| RAFS |
| builder |
tar
decoder

OS Kernel Kata Kata-CC | Application
Linux LinuxMacOS EROFS H
EROFS
EROFS FUSE Virtio-fs e s
A A iy —
I I
RAFS
e fscache
reference L 5| Nyus Ny tyde
FUSE mode Blobfs mode Block mode
.,/ RAFS Compressed |,
7 Data Blob
P lazy loading local cache & dedup
(cas)

—
customized | Stargz
star.gz star.gz ‘
)

oovi | ocivi
Compatble | targz ‘

" RAFS Uncompressed | RAFS Compressed

nydusd Data Blob Data Blob

(-] Alibaba Cloud

£€ Aliyun serverless image pull time drops from
20 seconds to 0.8s seconds. 7’

FTIRAEN

h! ByteDance

£€ serving container image acceleration in
Technical Infrastructure of ByteDance. 77

é ANT
GROUP

£€ serving large-scale clusters with millions of
container creations each day. ”?

BIRE

£6 starting to deploy millions of containers with
Dragonfly and Nydus. ??

Dragonfly P2P

STAcRaGS ISy some partners which are landed Nydus + Dragonfly

A node level storage subsystem

with P2P, cache and runtime
data deduplication 3

An image service integrated with ecosystem:
* OCI distribution compatible

* Integrated with buildkit/containerd/cri-
o/nerdctl/Kata/harbor/dragonfly

Use case: Container images —— Nydus

hsiangkao/wordpress:5.7-nydus-oci-ref

DIGEST: sha256 :24d2465206bbd873861bacc94e01c1d02e0e3038405f20468b76679636ec9cc

OS/ARCH COMPRESSED SIZE ® LAST PUSHED TYPE
linux/amd64 8.74 MB 5 minutes ago by hsiangkao Image

EROFS running with original OCI + Nydus slim indexes

EROFS core internals in brief

* Almost all erofs on-disk structures are well-aligned and laid within a
single block (never across two blocks for performance)

* On-disk super block & two version inodes (32 and 64 bytes)

1024 bytes
(reserved for bootloaders or other hybird formats like tar)

aligned with an inode slot

magic (0XEOF5E1E2, also to identify endianness)

s_blkbits
(currently 12 for 4 KiB, it may be relaxed on demand)

root_nid
(to indicate root inode on-disk offset)

inos
(total number of inodes)

build time
(image creation time or 0)

blocks
(total number of blocks)

volume UUID

volume label

super block
on-disk 128 Bytes

device table for multiple blobs (any plain format)
(used to refer to other blobs in the form of devices or files)

v

32-byte
compact on-disk inode

8-byte reserved
(as for Linux 6.2)

64-byte
extended on-disk inode

In-line short extended
Attributes (optional)

(fields are in full-width
| forms)

Chunk/compression
Indexes (if any)

tail-packing in-line data
(if any)

18-byte reserved
(as for Linux 6.2)

Chunk/compression
Indexes (if any)

tail-packing in-line data
(if any)

A

absolute offset = meta_blkaddr << s_blkbits + nid * 32

for better locality (i.e. selinux label,capabilities,
overlayfs xattrs and more.)

for better locality if it can be laid in the same
block and space-saving

EROFS core internals in brief

* On-disk directory format

Directory files:

INODE BASE = XATTRs Tail-packing inline dir data Directory blocks

32 or 64-byte format optional

-
-
-
-
-

=
-

-

dirent, dirent; ® dirent,; fnameg

|A Ll
I |

BLOCK SIZE

Filenames sorted in alphabetical order to improve performance by binary search.

EROFS core internals in brief

* Overview of Nydus use cases (since Linux v5.16)

™ DIR DIR . .
. SB - INODE INODE [\ - INODE TAIL - Directory block . Directory block
I e

Meta bIock - Meta block ~Meta block ' I Block size ~ Block size |

" INODE BASE - CHUNK INDEXes ! Aligned directory blocks !
CHUNK CHUNK CHUNK CHUNK Nydus payload Blob device
CHUNK CHUNK CHUNK . CHUNK Nydus payload Blob device

* Details of compressed data is somewhat not quite trivial, it could be
referred from

* EROFS Documentation
<https://docs.kernel.org/filesystems/erofs.html>

* EROFS ATC 19 Paper
<https://www.usenix.org/conference/atc19/presentation/gao>

EROFS recent updates

Chunk-based files —— sparse files and data-deduplicated plain files can be made.

Multiple devices/blobs ——EROFS image can refer to other external data as well;

EROFS over fscache (since v5.19, 2021-2022), which is already mentioned by some
materials available online:

* The evolution of the Nydus Image Acceleration
https://youtu.be/yr6CB1IN1xg

* Introduction to Nydus Image Service on In-kernel EROFS @ OSSEU 2022
https://sched.co/15z3N

Introduced a special inode (packed inode) for tail data (v6.1)
* so that tail data or the whole of files can be deduped/compressed together

Supported global compressed data deduplication by using rolling hash (v6.1)
EROFS over fscache page cache sharing (WIP)

EROFS compressed data deduplication

linux 5.10 + 5.10.50 + 5.10.100
1lz4hc,12

Dataset:
Compression algorithm:

Additional options: -T0 --force-uid=1000 --force-gid=1000
(in order to force 32-byte inodes to match squashfs)

4k pcluster + fragment + dedupe 397168640
8k pcluster + fragment + dedupe 364224512
16k pcluster + fragment + dedupe 341921792
32k pcluster + fragment + dedupe 328298496
64k pcluster + fragment + dedupe 324694016
128k pcluster + fragment + dedupe 323674112
256k pcluster + fragment + dedupe 322011136

squashfs-tools 4.5.1

test results (which uses level 12 by default

for 1lzdhc):

16k block 428785664
32k block 382894080
64k block 350179328
128k block 327073792
128k block + noI 334327808
256k block 315441152
256k block + nol 322707456

Im block 307425280

Im block + noI 314712064

https://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs-utils.git/commit/?id=990c7e38379547c4ffb98649913618eb 76746844

https://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs-utils.git/commit/?id=990c7e38379547c4ffb98649913618eb76746844

EROFS future roadmap

* (self-contained) verification solution;
e (self-contained) data-deduplicated encryption solution;

* Fscache improvements together with Bytedance’s
folks:

* Failover;
* Multiple daemons/dirs;
e Daemonless.

* And more
* https://lore.kernel.org/r/Y7vTpeNRaw3NIm9B@debian

https://lore.kernel.org/r/Y7vTpeNRaw3Nlm9B@debian

Thank you for listening!

* linux-erofs@lists.ozlabs.org
* https://nydus.dev
* IRC: hsiangkao @ oftc

mailto:linux-erofs@lists.ozlabs.org
https://nydus.dev/

