
EROFS file system update 
and its future

@ FOSDEM 23

Xiang Gao <xiang@kernel.org>



What’s EROFS? Why EROFS?
• EROFS stands for Enhanced Read-Only File System (originally started in late 2017), available since Linux 4.19.

• It’s designed to be a generic high-performance read-only filesystem with a simple but effecMve core on-disk format 
design;

• It almost has the best performance among the current in-kernel read-only filesystems (as of v6.2);

• Kernel mountable as a seekable archival format replacement of tradiMonal cpio and tar;

• Currently contributed by community lovers, Alibaba Cloud, ByteDance, Coolpad, Google, Huawei, OPPO, and more.

• Per-file LZ4 / LZMA (since 5.16) transparent data compression (as an opMon)

• Targeted for various high-performance read-only soluMons:
• System parMMons & APEX for Android smartphone [1]
• Other embedded systems (e.g. routers, IOT, ...)
• LiveCDs (archiso, ...)
• Container images (Nydus [2]) / app sandboxes
• AI datasets

• Many useful features are acMvely under development [3]

• Any sugges,ons or contribu,ons are always welcome!❤

… … …
product

vendor
system

APEX
apex_payload.img

.json, .xml, pubkey…

blob data (local, network, 
virAofs, etc…)

metadata
bootstra

p
foo

blobsblobsblobsblobs1

bar
…

Android Smartphones

RAFS v6 (EROFS-compatible) container images

[1] https://source.android.com/docs/core/architecture/kernel/erofs
[2] https://github.com/dragonflyoss/image-service
[3] https://lore.kernel.org/linux-fsdevel/YqZNJpgQ+xLSHBqK@debian/

https://source.android.com/docs/core/architecture/kernel/erofs
https://github.com/dragonflyoss/image-service
https://lore.kernel.org/linux-fsdevel/YqZNJpgQ+xLSHBqK@debian/


Use case: Android system partitions

• Android has several read-only partitions which behave as 
system fireware, which means “Android core can only be 
changed by way of an update”

• Benefits:
• easy for vendors to ship/distribute/keep original signing 

(golden) images to each instance;
• easy to roll back to the original shipped state or do 

incremental updates;
• easy to check data corruption or do data recovery even in a 

very low level (e.g. hardware);
• easy for real storage devices to do hardware write-protection;
• and more;

• Why introducing EROFS [1]? Also APEXs and (even) APKs?

[1] https://www.usenix.org/conference/atc19/presentation/gao

https://www.usenix.org/conference/atc19/presentation/gao


Use case: Container images —— Nydus

• Dragonfly Nydus is a user-space example which uses in-kernel EROFS to leverage its functionality to do 
fast container image distribution like lazy pulling and data de-duplication across layers & images.

• Currently it can do lazy pulling for 1) Nydus/EROFS images, 2) (e)stargz imags and 3) original OCI images 
with a minimal index (soci-like);

• For more details of Nydus itself, also see FOSDEM 23 Nydus Image Service for Confidential Containers 
@ Confidential Computing devroom

some partners which are landed Nydus + Dragonfly



Use case: Container images —— Nydus

• EROFS running with original OCI + Nydus slim indexes



EROFS core internals in brief

• Almost all erofs on-disk structures are well-aligned and laid within a 
single block (never across two blocks for performance)

• On-disk super block & two version inodes (32 and 64 bytes)



EROFS core internals in brief

• On-disk directory format 

Directory files:

on-disk directory format:

BLOCK SIZE

dirent0 fname0 fname1 fnamen-1dirent1 direntn-1… …

INODE BASE XATTRs Tail-packing inline dir data
opAonal optional (if necessary)

Directory blocks
32 or 64-byte format

…

Filenames sorted in alphabetical order to improve performance by binary search.



EROFS core internals in brief

• Overview of Nydus use cases (since Linux v5.16)

• Details of compressed data is somewhat not quite trivial, it could be 
referred from
• EROFS Documentation 

<https://docs.kernel.org/filesystems/erofs.html>
• EROFS ATC 19 Paper 

<https://www.usenix.org/conference/atc19/presentation/gao>



EROFS recent updates

• Chunk-based files —— sparse files and data-deduplicated plain files can be made.

• Multiple devices/blobs ——EROFS image can refer to other external data as well;

• EROFS over fscache (since v5.19, 2021-2022), which is already mentioned by some 
materials available online:

• The evolution of the Nydus Image Acceleration
• https://youtu.be/yr6CB1JN1xg

• Introduction to Nydus Image Service on In-kernel EROFS @ OSSEU 2022
• https://sched.co/15z3N

• Introduced a special inode (packed inode) for tail data (v6.1)
• so that tail data or the whole of files can be deduped/compressed together

• Supported global compressed data deduplication by using rolling hash (v6.1)

• EROFS over fscache page cache sharing (WIP)



EROFS compressed data deduplication

https://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs-utils.git/commit/?id=990c7e38379547c4ffb98649913618eb76746844

https://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs-utils.git/commit/?id=990c7e38379547c4ffb98649913618eb76746844


EROFS future roadmap

• (self-contained) verification solution;
• (self-contained) data-deduplicated encryption solution;
• Fscache improvements together with Bytedance’s

folks:
• Failover;
• Multiple daemons/dirs;
• Daemonless.

• And more
• https://lore.kernel.org/r/Y7vTpeNRaw3Nlm9B@debian

https://lore.kernel.org/r/Y7vTpeNRaw3Nlm9B@debian


Thank you for listening!

• linux-erofs@lists.ozlabs.org
• https://nydus.dev
• IRC: hsiangkao @ oftc

mailto:linux-erofs@lists.ozlabs.org
https://nydus.dev/

