Why resolving two names in a GUI program

Is hard

Summary of available name resolution APIs on Linux and
why a new one is needed

How can app resolve names?

getaddrinfo(3)

Address family and protocol independent
Requires just hostname and service name
Returns ordered list of address with mixed AF
Supported on all major OS

Resolution protocol independent

Blocks thread until finished

DNS only libraries

e Some provide also asynchronous resolution
o getdns
o unbound library
o adns
(@)

c-ares

e Won’t resolve other protocol names at all
e Limits mobile devices or workstations, not servers

https://getdnsapi.net/
https://nlnetlabs.nl/projects/unbound/about/
http://www.chiark.greenend.org.uk/~ian/adns/
https://c-ares.org/

Not only DNS provides name resolution

e getaddrinfo() on GNU/Linux serve names from configurable NSS plugins

e Name Service Switch can use different modules

files — local /etc/hosts file with hostname overrides

MDNS — local LAN name resolution over Bonjour (nss-mdns)

LLMNR — local LAN resolution present on Windows (enabled in systemd-resolved)
WINS — Netbios based resolution from Samba (samba-winbind-modules, obsolete?)
Libvirt — Virtual machines running on this host (nss-libvirt)

DNS — usually tried last

e Common application should use names provided by any of them

o O O O O O

https://github.com/lathiat/nss-mdns
https://www.samba.org/samba/docs/current/man-html/winbindd.8.html
https://libvirt.org/nss.html

Systemd-resolved APIs

Provides DBus resolution API and port 53 stub
But no other service provides compatible interface
Supports multiple protocols

Breaks DNS-only applications

o Forwards DNS queries only to non-DNS protocols
o Causes own kind of regressions (#23622, #23737)

https://www.freedesktop.org/software/systemd/man/org.freedesktop.systemd1.html
https://github.com/systemd/systemd/issues/23622
https://github.com/systemd/systemd/issues/23737

How can | make multiple connections?

BSD (and Linux) socket(7) interface

Can work with both streamed TCP and datagram UDP

Present on most operating systems with small differences

Even single thread can handle dozens of connections!

Use poll(2) or select(2) to process only sockets with received data

s blocking a problem?

Graphical application requirements

e Blocking call in the main thread makes application non-responsive
e Every GUI application can handle multiple sockets
e Input events from are delivered over (some) socket

o From other applications or services too

e Applications implements just callbacks to events
e Spends most of time waiting for events

Just spawn a thread, right?

Correct work with threads is difficult

e Spawning a new thread is simple
e Receiving its results in the main thread is not
® Thread communication increases complexity

Why do we need a thread anyway?

What does name resolution?

e Obtain answer from fast local storage

o files, libvirt — read some data from disk

e Ask some service on local or remote host and wait for answer
o Use some socket(s) to send request(s)
o May wait noticeable period of time
o Extract addresses from protocol-specific response and return them to the caller
o mdns, resolve, wins

e Waiting for timeout or socket activity is implemented by most frameworks

How can it be made non-blocking?

e Use common code to implement protocol-specific plugins

e Provide a way to work in custom event loops
o Not only Qt and GLib are used in applications

e Rewrite existing NSS modules to use callbacks instead of blocking

o Current NSS modules are easy to write, but difficult to use
o Resolution should be simple even in non-trivial applications

e Eventloop integration module has to offer:

o Ability to add/modify sockets to the watched list and specify events to watch

o Be notified after some time elapsed without any socket activity (timeout handling)
o Provide callbacks to handle socket events and timeout events

o Time precision requirement is not important (timeouts are often in seconds)

Why non-blocking?

e (Queries do not communicate between threads — no race conditions
e Query number limited only by the number of sockets and timers handled

o Almost unlimited usually
o Much cheaper than thread per query
e Single connection can stay in a single thread

o Resolution becomes more similar to network data processing
o Worker threads still make sense sometime
m Small JSON data x Disk intensive jobs

e Server software could use simplified resolution too

| like it, where is the implementation?

e No working code yet :-(
® The most similar implementation

o GitHub - crossdistro/netresolve — written by Pavel Simerda

o Implements separate loadable modules
o But non-blocking API is missing
o Documentation is poor

e [would like to extend it, but first need feedback
e If we add metadata parameters array to struct addrinfo, it may work also for

HTTPS RR
o Atleast SRV is used in both DNS and Multicast DNS for similar thing

https://github.com/crossdistro/netresolve

Questions?

Contacts

Email: Petr Mensik <pemensik@redhat.com>
Matrix: @pemensik:fedora.im

IRC: libera.chat, pemensik at #dns

GitHub: https://github.com/pemensik

GitLab: https://gitlab.com/pemensik

mailto:pemensik@redhat.com
https://github.com/pemensik
https://gitlab.com/pemensik

