
Why resolving two names in a GUI program

is hard

Summary of available name resolution APIs on Linux and
why a new one is needed

How can app resolve names?

getaddrinfo(3)
● Address family and protocol independent
● Requires just hostname and service name
● Returns ordered list of address with mixed AF
● Supported on all major OS
● Resolution protocol independent
● Blocks thread until finished

DNS only libraries
● Some provide also asynchronous resolution

○ getdns
○ unbound library
○ adns
○ c-ares

● Won’t resolve other protocol names at all
● Limits mobile devices or workstations, not servers

https://getdnsapi.net/
https://nlnetlabs.nl/projects/unbound/about/
http://www.chiark.greenend.org.uk/~ian/adns/
https://c-ares.org/

Not only DNS provides name resolution
● getaddrinfo() on GNU/Linux serve names from configurable NSS plugins
● Name Service Switch can use different modules

○ files – local /etc/hosts file with hostname overrides
○ MDNS – local LAN name resolution over Bonjour (nss-mdns)
○ LLMNR – local LAN resolution present on Windows (enabled in systemd-resolved)
○ WINS – Netbios based resolution from Samba (samba-winbind-modules, obsolete?)
○ Libvirt – Virtual machines running on this host (nss-libvirt)
○ DNS – usually tried last

● Common application should use names provided by any of them

https://github.com/lathiat/nss-mdns
https://www.samba.org/samba/docs/current/man-html/winbindd.8.html
https://libvirt.org/nss.html

Systemd-resolved APIs
● Provides DBus resolution API and port 53 stub
● But no other service provides compatible interface
● Supports multiple protocols
● Breaks DNS-only applications

○ Forwards DNS queries only to non-DNS protocols
○ Causes own kind of regressions (#23622, #23737)

https://www.freedesktop.org/software/systemd/man/org.freedesktop.systemd1.html
https://github.com/systemd/systemd/issues/23622
https://github.com/systemd/systemd/issues/23737

How can I make multiple connections?

BSD (and Linux) socket(7) interface
● Can work with both streamed TCP and datagram UDP
● Present on most operating systems with small differences
● Even single thread can handle dozens of connections!
● Use poll(2) or select(2) to process only sockets with received data

Is blocking a problem?

Graphical application requirements
● Blocking call in the main thread makes application non-responsive
● Every GUI application can handle multiple sockets
● Input events from are delivered over (some) socket

○ From other applications or services too
● Applications implements just callbacks to events
● Spends most of time waiting for events

Just spawn a thread, right?

Correct work with threads is difficult
● Spawning a new thread is simple
● Receiving its results in the main thread is not
● Thread communication increases complexity

Why do we need a thread anyway?

What does name resolution?
● Obtain answer from fast local storage

○ files, libvirt – read some data from disk
● Ask some service on local or remote host and wait for answer

○ Use some socket(s) to send request(s)
○ May wait noticeable period of time
○ Extract addresses from protocol-specific response and return them to the caller
○ mdns, resolve, wins

● Waiting for timeout or socket activity is implemented by most frameworks

How can it be made non-blocking?
● Use common code to implement protocol-specific plugins
● Provide a way to work in custom event loops

○ Not only Qt and GLib are used in applications
● Rewrite existing NSS modules to use callbacks instead of blocking

○ Current NSS modules are easy to write, but difficult to use
○ Resolution should be simple even in non-trivial applications

● Eventloop integration module has to offer:
○ Ability to add/modify sockets to the watched list and specify events to watch
○ Be notified after some time elapsed without any socket activity (timeout handling)
○ Provide callbacks to handle socket events and timeout events
○ Time precision requirement is not important (timeouts are often in seconds)

Why non-blocking?
● Queries do not communicate between threads – no race conditions
● Query number limited only by the number of sockets and timers handled

○ Almost unlimited usually
○ Much cheaper than thread per query

● Single connection can stay in a single thread
○ Resolution becomes more similar to network data processing
○ Worker threads still make sense sometime

■ Small JSON data × Disk intensive jobs
● Server software could use simplified resolution too

I like it, where is the implementation?
● No working code yet :-(
● The most similar implementation

○ GitHub - crossdistro/netresolve – written by Pavel Šimerda
○ Implements separate loadable modules
○ But non-blocking API is missing
○ Documentation is poor

● I would like to extend it, but first need feedback
● If we add metadata parameters array to struct addrinfo, it may work also for

HTTPS RR
○ At least SRV is used in both DNS and Multicast DNS for similar thing

https://github.com/crossdistro/netresolve

Questions?

Contacts
● Email: Petr Menšík <pemensik@redhat.com>
● Matrix: @pemensik:fedora.im
● IRC: libera.chat, pemensik at #dns
● GitHub: https://github.com/pemensik
● GitLab: https://gitlab.com/pemensik

mailto:pemensik@redhat.com
https://github.com/pemensik
https://gitlab.com/pemensik

