
Drink: implementation details

Who? Stéphane Bortzmeyer
stephane+fosdem@bortzmeyer.org

When? FOSDEM, 4 february 2023

What is Drink

A tramway station in Antwerp

Demo

% dig @2001:4860:4860::8888 2+2.op.dyn.bortzmeyer.fr TXT
...
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 41999
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
...
;; ANSWER SECTION:
2+2.op.dyn.bortzmeyer.fr. 21600 IN TXT "4"
2+2.op.dyn.bortzmeyer.fr. 21600 IN RRSIG TXT 8 5 86400 (

20230208040000 20230203154000 63937 dyn.bortzmeyer.fr.
rnCWshkZl1lQInUPnahx1WjUVP66Bdd+ff/suCItb9e+

...
;; WHEN: Sat Feb 04 10:09:13 CET 2023
;; MSG SIZE rcvd: 276

A dynamic authoritative name server

Services: returns the IP address of the client,
and a few others, probably less useful.
Goals: learn, have fun, implement a lot of DNS stuff,
test ideas at IETF hackathons.

A dynamic authoritative name server

Services: returns the IP address of the client,

and a few others, probably less useful.
Goals: learn, have fun, implement a lot of DNS stuff,
test ideas at IETF hackathons.

A dynamic authoritative name server

Services: returns the IP address of the client,
and a few others, probably less useful (well, ECS echo
could be useful).

Goals: learn, have fun, implement a lot of DNS stuff,
test ideas at IETF hackathons.

A dynamic authoritative name server

Services: returns the IP address of the client,
and a few others, probably less useful.
Goals: learn, have fun, implement a lot of DNS stuff
(TCP, NSID, cookies, DNSSEC), test ideas at IETF
hackathons.

Implementation

Written in Elixir,
Relies on some libraries: many interesting issues.
Can itself call remote microservices,
Free software at
https://framagit.org/bortzmeyer/drink.

https://framagit.org/bortzmeyer/drink

Implementation

Written in Elixir (with the Erlang runtime),

Relies on some libraries: many interesting issues.
Can itself call remote microservices,
Free software at
https://framagit.org/bortzmeyer/drink.

https://framagit.org/bortzmeyer/drink

Implementation

Written in Elixir,
Relies on some libraries: many interesting issues (no
perfect DNS library, unlike Go or Python).

Can itself call remote microservices,
Free software at
https://framagit.org/bortzmeyer/drink.

https://framagit.org/bortzmeyer/drink

Implementation

Written in Elixir,
Relies on some libraries: many interesting issues.
Can itself call remote microservices (so can be slow and
unreliable),

Free software at
https://framagit.org/bortzmeyer/drink.

https://framagit.org/bortzmeyer/drink

Implementation

Written in Elixir,
Relies on some libraries: many interesting issues.
Can itself call remote microservices,
Free software at
https://framagit.org/bortzmeyer/drink.

https://framagit.org/bortzmeyer/drink

Parallelism

Elixir/Erlang favor massive parallelism,
Every DNS request is a process,
Every TCP connection is a process,
Ancillary stuff is a process,
Consequences: a crashed or stuck request does not
block the server,
For TCP, pipelining and out-of-order replies worked
without even thinking of it.
Unlike what many people say, parallel programming is
simpler.

Parallelism

Elixir/Erlang favor massive parallelism,

Every DNS request is a process,
Every TCP connection is a process,
Ancillary stuff is a process,
Consequences: a crashed or stuck request does not
block the server,
For TCP, pipelining and out-of-order replies worked
without even thinking of it.
Unlike what many people say, parallel programming is
simpler.

Parallelism

Elixir/Erlang favor massive parallelism,
Every DNS request is a process (an Erlang one, not an
OS one),

Every TCP connection is a process,
Ancillary stuff is a process,
Consequences: a crashed or stuck request does not
block the server,
For TCP, pipelining and out-of-order replies worked
without even thinking of it.
Unlike what many people say, parallel programming is
simpler.

Parallelism

Elixir/Erlang favor massive parallelism,
Every DNS request is a process,
Every TCP connection is a process,

Ancillary stuff is a process,
Consequences: a crashed or stuck request does not
block the server,
For TCP, pipelining and out-of-order replies worked
without even thinking of it.
Unlike what many people say, parallel programming is
simpler.

Parallelism

Elixir/Erlang favor massive parallelism,
Every DNS request is a process,
Every TCP connection is a process,
Ancillary stuff such as logging periodic statistics is a
process,

Consequences: a crashed or stuck request does not
block the server,
For TCP, pipelining and out-of-order replies worked
without even thinking of it.
Unlike what many people say, parallel programming is
simpler.

Parallelism

Elixir/Erlang favor massive parallelism,
Every DNS request is a process,
Every TCP connection is a process,
Ancillary stuff is a process,
Consequences: a crashed or stuck request does not
block the server,

For TCP, pipelining and out-of-order replies worked
without even thinking of it.
Unlike what many people say, parallel programming is
simpler.

Parallelism

Elixir/Erlang favor massive parallelism,
Every DNS request is a process,
Every TCP connection is a process,
Ancillary stuff is a process,
Consequences: a crashed or stuck request does not
block the server,
For TCP, pipelining and out-of-order replies worked
without even thinking of it.

Unlike what many people say, parallel programming is
simpler.

Parallelism

Elixir/Erlang favor massive parallelism,
Every DNS request is a process,
Every TCP connection is a process,
Ancillary stuff is a process,
Consequences: a crashed or stuck request does not
block the server,
For TCP, pipelining and out-of-order replies worked
without even thinking of it.
Unlike what many people say, parallel programming is
simpler.

Spawning the TCP processes

Enum.map(addresses, fn address ->
socket_result = Socket.TCP.listen(config()["port"],

[version: version,
packet: 2, # Automatically add/read a 2-bytes

length before data.
mode: :binary,
local: [address: address]])

socket = socket_open(socket_result)
tcp_pid = spawn_link(Drink.Server,

:tcp_loop_acceptor,
[socket, config()["bases"]])

Process.monitor(tcp_pid)
end)

Robustness

Everybody loves RFC 9267,
The Internet is a jungle,
Don’t trust the integrity of the incoming packets,
Compression pointers are a great source of security bugs,
EDNS can be fun, too.

Robustness

Everybody loves RFC 9267,

The Internet is a jungle,
Don’t trust the integrity of the incoming packets,
Compression pointers are a great source of security bugs,
EDNS can be fun, too.

Robustness

Everybody loves RFC 9267,
The Internet is a jungle,

Don’t trust the integrity of the incoming packets,
Compression pointers are a great source of security bugs,
EDNS can be fun, too.

Robustness

Everybody loves RFC 9267,
The Internet is a jungle,
Don’t trust the integrity of the incoming packets,

Compression pointers are a great source of security bugs,
EDNS can be fun, too.

Robustness

Everybody loves RFC 9267,
The Internet is a jungle,
Don’t trust the integrity of the incoming packets,
Compression pointers are a great source of security bugs,

EDNS can be fun, too.

Robustness

Everybody loves RFC 9267,
The Internet is a jungle,
Don’t trust the integrity of the incoming packets,
Compression pointers are a great source of security bugs,
EDNS can be fun, too (had to be done from scratch for
Drink).

Parsing EDNS

def extract_edns_opt(bin) do
<<code::unsigned-integer-size(16)>> =

Binary.part(bin, 0, 2)
code_txt =

case code do
Drink.EdnsCodes.nsid -> :nsid
...
other -> other
end

Read RFC 6891
<<length::unsigned-integer-size(16)>> =

Binary.part(bin, 2, 2)
data = Binary.part(bin, 4, length)
[{code_txt, length, data} |

extract_edns_opt(Binary.part(bin, 4+length, byte_size(bin)-(4+length)))]
rescue

e ->
raise Drink.EdnsError, inspect(e)

end

DNSSEC

A dynamic server requires dynamic signing,
Cryptography is fun: one forgotten bit and everything is
wrong,
Example of a problem: the default encoding of DNS
replies compresses names in NS and SOA messages.

DNSSEC

A dynamic server requires dynamic signing,

Cryptography is fun: one forgotten bit and everything is
wrong,
Example of a problem: the default encoding of DNS
replies compresses names in NS and SOA messages.

DNSSEC

A dynamic server requires dynamic signing,
Cryptography is fun: one forgotten bit and everything is
wrong,

Example of a problem: the default encoding of DNS
replies compresses names in NS and SOA messages.

DNSSEC

A dynamic server requires dynamic signing,
Cryptography is fun: one forgotten bit and everything is
wrong,
Example of a problem: the default encoding of DNS
replies compresses names in NS and SOA messages (no
way to disable it, I had to rewrite the encoding from
scratch).

Signing

RFC 4034, section 3.1.8.1
owner_bin = Binary.from_list(Drink.Utils.encode(String.downcase(owner)))
short_rrsig = <<ntype::unsigned-integer-size(16),

@algorithm::unsigned-integer-size(8),
num_labels::unsigned-integer-size(8),
ttl::unsigned-integer-size(32),
expiration::unsigned-integer-size(32),
inception::unsigned-integer-size(32),
tag::unsigned-integer-size(16)>>

|> Binary.append(owner_bin)
encoded_rrset = Drink.Encoding.encode(data)
{:ok, sig} = ExPublicKey.sign(Binary.append(short_rrsig,

encoded_rrset),
key)

short_rrsig |> Binary.append(sig)

Thou shall not lie

Dynamic signing of negative answers requires to ignore
the 9th commandment,
Drink uses the white lies of RFC 4470,
Hard to get right and the behaviour of resolvers vary.

Thou shall not lie

Dynamic signing of negative answers requires to ignore
the 9th commandment,

Drink uses the white lies of RFC 4470,
Hard to get right and the behaviour of resolvers vary.

Thou shall not lie

Dynamic signing of negative answers requires to ignore
the 9th commandment,
Drink uses the white lies of RFC 4470 (generating NSEC
records going from “a bit before” to “a bit after”),

Hard to get right and the behaviour of resolvers vary.

Thou shall not lie

Dynamic signing of negative answers requires to ignore
the 9th commandment,
Drink uses the white lies of RFC 4470,
Hard to get right and the behaviour of resolvers vary.

Generating NSEC bitmaps

block = floor(Enum.min(l)/256)
todo = Enum.filter(l, fn type -> type < (256*(block+1)) end)
todo = Enum.map(todo, fn type -> type - (256*block) end)
bits = bits_of(todo, 0)
remainder = rem(length(bits), 8)
pad_size =

if remainder == 0 do
0

else
8 - remainder

end

Tests

Internal tests with the Elixir framework,
External tests from a Python program,
Important: tests with broken requests.

Tests

Internal tests with the Elixir framework,

External tests from a Python program,
Important: tests with broken requests.

Tests

Internal tests with the Elixir framework,
External tests from a Python program (for diversity),

Important: tests with broken requests.

Tests

Internal tests with the Elixir framework,
External tests from a Python program,
Important: tests with broken requests.

Generating broken requests

edns_option = struct.pack(">H", nsid) + \
struct.pack(">H", 14) # Wrong length

additional_section = struct.pack("B", 0) + \
struct.pack(">H", opt) + \
struct.pack(">H", bufsize) + \
struct.pack(">L", 0) + struct.pack(">H", 4) + \
edns_option

data = struct.pack(">HHHHHH", id, misc, 1, 0, 0, 1) + \
encode_name(domain) + struct.pack(">H", txt) + \
struct.pack(">H", in_class) + \
additional_section

s.sendto(data, sockaddr)
rdata, remote_server = s.recvfrom(4096)
resp = dns.message.from_wire(rdata)
assert resp.rcode() == formerr

