
Demystifying Compiler-rt Sanitizers
for multiple architectures

Demystifying Compiler-rt Sanitizers
for multiple architectures

Mamta Shukla, Software Engineer

Agenda
• LLVM and Clang
• Compiler-rt Sanitizers
• How to build Compiler-rt Sanitizers
• How Compiler-rt Sanitizers work
• Outlook

Source

Flags

Preprocessor Frontend
Middle

end
Backend

(codegen)

Linker Assembler

Binary

Compiler Flow

Source File

Flags

Frontend
Middle

end

Backend
(codegen)

Binary

LLVM

LLVM
Optimizer

LLVM Frontend

Clang
Gollvm
Rustc

Swift AST

LLVM Back end

x86
ARM
ARM64
RISC-V

LLVM
IR

C File

Flags

Preprocessor Frontend
Middle

end
Backend

(codegen)

Linker Assembler

Binary

Clang and LLVM

Preprocessor
& Lexer

Tokens Parser
Semantic
Analysis

AST Codegen LLVM IR

Clang and LLVM

• LLVM Project is a collection of modular and reusable
compiler and toolchain technologies. - llvm.org

• Clang is a compiler frontend for C, C++, Objective-C .. in
LLVM infrastructure, but
clang (executable)is more than that: compiler driver

Compiler-rt Sanitizers

Compiler-rt (Runtimes)
• LLVM equivalent of libgcc.

• It provides target-specific support for low-level functionality that is not
supported by the hardware.

• Builtins : provides an implementation of the low-level target-specific
hooks required by code generation and other runtime components

• Sanitizers Runtimes: provides instrumentation to catch runtime target
behavior like buffer overflow, race conditions, and double-free memory
etc.

• Profilers: collect coverage information.

Compiler-rt (Runtimes)
• LLVM equivalent of libgcc.

• It provides target-specific support for low-level functionality that is not
supported by the hardware.

• Example:32-bit targets usually lack instructions to support 64-bit
division. Let's verify:

#include <stdio.h>
#include <stdint.h
#include <stdlib.h>
int main() {

uint64_t a = 0ULL, b = 0ULL;
scanf ("%lld %lld", &a, &b);
printf ("64-bit division is %lld\n", a /

b);
return EXIT_SUCCESS;

}

Comparing Assembly instruction for both:

udivid3: https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/i386/udivdi3.S

Compiler-rt

$clang -S -m32 div_64.c -o div-32.S $clang -S div_64.c -o div-64.S

Compiler-rt Sanitizers

• A sanitizer checks certain runtime properties of the code (probe) that's
inserted by the compiler. It is used to verify program correctness or check
security flaws.

• In LLVM, this kind of instrumentation is provided with the help of
compiler-rt as sanitizers

Compiler-rt Sanitizers

• A sanitizer checks certain runtime properties of the code (probe) that's
inserted by the compiler. It is used to verify program correctness or check
security flaws.

• In LLVM, this kind of instrumentation is provided with the help of
compiler-rt as sanitizers

• ASAN: Address Sanitizer to detect use-after free, buffer-overflow and leaks
• UBSAN: Undefined Behavior Sanitizer
• MSAN: Memory Sanitizer
• TSAN: Thread Sanitizer to detect race conditions and deadlocks

$ clang -rtlib=compiler-rt -fsanitize=address -O1 -fno-omit-frame-pointer -g test.c -o test
$./test

Address Sanitizer: in action
int main() {

char *x = (char*)malloc(10 * sizeof(char*));
free(x);
return x[5];

}

How to build Compiler-rt
Sanitizers?

• Build with LLVM
-DLLVM_ENABLE_PROJECTS="clang;compiler-rt"

Or
-DLLVM_ENABLE_RUNTIMES="compiler-rt"

• Separate Build
Require llvm-config, build llvm first
$cmake ../compiler-rt -DLLVM_CONFIG_PATH=</path/to/llvm-config> –G

<generator> -B <build_dir>

Use any Generator – Ninja or Unix Makefiles
$ninja –C <build_dir>

LLVM with compiler-rt

With clang build:
$cmake -B build -G Ninja -DLLVM_ENABLE_PROJECTS="clang;compiler-rt"
-DCOMPILER_RT_BUILD_SANITIZERS=ON -DLLVM_TARGETS_TO_BUILD=X86 LLVM_OPTIMIZED_TABLEGEN=ON -
DCMAKE_BUILD_TYPE=Release llvm/

Generated config:
-- Builtin supported architectures: x86_64
-- Generated Sanitizer SUPPORTED_TOOLS list on "Linux" is "asan;lsan;msan;tsan;ubsan"
-- sanitizer_common tests on "Linux" will run against "asan;lsan;msan;tsan;ubsan"
-- Supported architectures for crt: x86_64

Enabling sanitizers with compiler-rt

With clang build:
$cmake -B build -G Ninja -DLLVM_ENABLE_PROJECTS="clang;compiler-rt"
-DCOMPILER_RT_BUILD_SANITIZERS=ON -DLLVM_TARGETS_TO_BUILD=X86 LLVM_OPTIMIZED_TABLEGEN=ON -
DCMAKE_BUILD_TYPE=Release llvm/

After build and installation:

Enabling sanitizers with compiler-rt

With standalone build:
$cmake -B build-compiler-rt compiler-rt -DLLVM_CONFIG_PATH=build/bin/llvm-config

-DCOMPILER_RT_BUILD_SANITIZERS=ON -G Ninja

Generated config:

Enabling sanitizers with compiler-rt

$ cmake with options
-G Ninja
-DCMAKE_AR=/path/to/llvm-ar
-DCMAKE_ASM_COMPILER_TARGET="arm-linux-gnueabihf"
-DCMAKE_ASM_FLAGS="build-c-flags"
-DCMAKE_C_COMPILER=/path/to/clang
-DCMAKE_C_COMPILER_TARGET="arm-linux-gnueabihf"
-DCMAKE_C_FLAGS="build-c-flags"
-DCMAKE_EXE_LINKER_FLAGS="-fuse-ld=lld"
-DCMAKE_NM=/path/to/llvm-nm
-DCMAKE_RANLIB=/path/to/llvm-ranlib
-DCOMPILER_RT_BUILD_BUILTINS=ON
-DCOMPILER_RT_BUILD_LIBFUZZER=ON
-DCOMPILER_RT_BUILD_MEMPROF=ON
-DCOMPILER_RT_BUILD_PROFILE=ON
-DCOMPILER_RT_BUILD_SANITIZERS=ON
-DCOMPILER_RT_BUILD_XRAY=OFF
-DCOMPILER_RT_DEFAULT_TARGET_ONLY=ON
-DLLVM_CONFIG_PATH=/path/to/llvm-config

Cross-compiling compiler-rt sanitizers

Making it a bit easier for
embedded devices: meta-clang

Compiler-rt sanitizers in meta-clang

• Add meta-clang layer – lldb, cross-compiler, sanitizer
$ bitbake-layers add-layer meta-clang

Compiler-rt sanitizers in meta-clang

• To build clang SDK:
CLANGSDK=1 in local.conf

• To use clang as default toolchain:
TOOLCHAIN = "clang"

• To use LLVM Runtime:
RUNTIME = "llvm"

• To build compiler-rt and compiler-rt-sanitizer in SDK add in local.conf or in
packagegroups:
TOOLCHAIN_HOST_TASK:append = " nativesdk-compiler-rt nativesdk-compiler-rt-
sanitizers

TOOLCHAIN_TARGET_TASK:append = " compiler-rt-dev compiler-rt-staticdev compiler-
rt sanitizers-dev compiler-rt-sanitizers-staticdev"

Compiler-rt sanitizers in meta-clang

• To use SDK:
$ sh oecore-x86_64-cortexa15t2hf-neon-toolchain-nodistro.0.sh //Install SDK
$ source environment-setup-cortexa9hf-neon-poky-linux-gnueabi

• To cross-compile with clang :
$ {CLANGCC} -rtlib=compiler-rt -fsanitize=address test-sanitizer.c -o test

• To test in Qemu :
$ qemu-arm -L <path_to_sysroot> ./test-sanitizer –v

How Compiler-rt Sanitizers
work?

Compile without sanitizer and run:
$clang test-overflow.c -o test
./test 1 2 4 4
Segmentation fault (core dumped)

Address Sanitizer: a deep dive
int main(int argc, char **argv) {
int buffer[2];
for (int i = 1; i < argc; ++i)

buffer[i-1] = atoi(argv[i]);
for (int i = 1; i < argc; ++i)

printf("%d ", buffer[i-1]);
return 0;

}

Compile and run:
$clang -rtlib=compiler-rt -fsanitize=address -O1 -fno-omit-frame-pointer

test-overflow.c -o test

Address Sanitizer: a deep dive
int main(int argc, char **argv) {
int buffer[2];
for (int i = 1; i < argc; ++i)

buffer[i-1] = atoi(argv[i]);
for (int i = 1; i < argc; ++i)

printf("%d ", buffer[i-1]);
return 0;

}

Address Sanitizer: a deep dive
===
==19270==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x3fffdb38 at pc 0x400f6418
bp 0x3fffdb18 sp 0x3fffdb14
WRITE of size 4 at 0x3fffdb38 thread T0

#0 0x400f6414 in main /home/mamta/fosdem/sdk-test/test-overflow.c:9:17
#1 0x3f5818ec (/lib/libc.so.6+0x218ec) (BuildId: d34a05151f021dd285dc5f185d4029a0d135ab64)
#2 0x3f5819f4 (/lib/libc.so.6+0x219f4) (BuildId: d34a05151f021dd285dc5f185d4029a0d135ab64)

Address 0x3fffdb38 is located in stack of thread T0 at offset 24 in frame
#0 0x400f62a4 in main /home/mamta/fosdem/sdk-test/test-overflow.c:4

This frame has 1 object(s):
[16, 24) 'buffer' (line 6) <== Memory access at offset 24 overflows this variable

HINT: this may be a false positive if your program uses some custom stack unwind mechanism,
swapcontext or vfork

(longjmp and C++ exceptions *are* supported)
SUMMARY: AddressSanitizer: stack-buffer-overflow /home/mamta/fosdem/sdk-test/test-
overflow.c:9:17 in main

Address Sanitizer: a deep dive
int main(int argc, char **argv) {
int buffer[2];
for (int i = 1; i < argc; ++i)

buffer[i-1] = atoi(argv[i]);
for (int i = 1; i < argc; ++i)

printf("%d ", buffer[i-1]);
return 0;

}

int main(int argc, char **argv) {
int buffer[2];
for (int i = 1; i < argc; ++i)

if (i>2){
notifyerror();

}

buffer[i-1] = atoi(argv[i]);
for (int i = 1; i < argc; ++i)

printf("%d ", buffer[i-1]);
return 0;

}

After adding the sanitizer instrumentation

Address Sanitizer: a deep dive
int main(int argc, char **argv) {
int buffer[2];
for (int i = 1; i < argc; ++i)

buffer[i-1] = atoi(argv[i]);
for (int i = 1; i < argc; ++i)

printf("%d ", buffer[i-1]);
return 0;

}

int main(int argc, char **argv) {
int buffer[2];
for (int i = 1; i < argc; ++i)

if (i>2) {
notifyerror();

}

buffer[i-1] = atoi(argv[i]);
for (int i = 1; i < argc; ++i)

printf("%d ", buffer[i-1]);
return 0;

}

Memory that shouldn’t be accessed is poisoned

if (IsPoisoned(buffer)) {
ReportError(buffer, kAccessSize, kIsWrite);

}

Address Sanitizer: a deep dive
SUMMARY: AddressSanitizer: stack-buffer-overflow /home/mamta/fosdem/sdk-test/test-overflow.c:9:17 in main
Shadow bytes around the buggy address:

0x27fffb10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=>0x27fffb60: 00 00 00 00 f1 f1 00[f3]f3 f3 00 00 00 00 00 00
0x27fffb70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffba0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffbb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5

Stack use after scope: f8

Shadow Memory and
Application Memory

Address Sanitizer: a deep dive
SUMMARY: AddressSanitizer: stack-buffer-overflow /home/mamta/fosdem/sdk-test/test-overflow.c:9:17 in main
Shadow bytes around the buggy address:

0x27fffb10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=>0x27fffb60: 00 00 00 00 f1 f1 00[f3]f3 f3 00 00 00 00 00 00
0x27fffb70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffba0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffbb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5

Stack use after scope: f8

Shadow Memory and
Application Memory

Outlook

Outlook

• Great tool to find bugs in runtime for complex
applications

• By using sanitizers, we can improve development
quality with ease and with high precision

• Increases code size but still faster than Valgrind
• Still not all architectures are supported uniformly

Questions ?

Write to me or connect

