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Clang and LLVM

• LLVM Project is a collection of modular and reusable 
compiler and toolchain technologies. - llvm.org

• Clang is a compiler frontend for C, C++, Objective-C .. in 
LLVM infrastructure, but 
clang (executable)is more than that: compiler driver



Compiler-rt Sanitizers



Compiler-rt (Runtimes)
• LLVM equivalent of libgcc.

• It provides target-specific support for low-level functionality that is not 
supported by the hardware.

• Builtins : provides an implementation of the low-level target-specific 
hooks required by code generation and other runtime components

• Sanitizers Runtimes: provides instrumentation to catch runtime target 
behavior like buffer overflow, race conditions, and double-free memory 
etc.

• Profilers: collect coverage information.



Compiler-rt (Runtimes)
• LLVM equivalent of libgcc.

• It provides target-specific support for low-level functionality that is not 
supported by the hardware.

• Example:32-bit targets usually lack instructions to support 64-bit 
division. Let's verify:

#include <stdio.h>
#include <stdint.h
#include <stdlib.h>
int main() {

uint64_t a = 0ULL, b = 0ULL;
scanf ("%lld %lld", &a, &b);
printf ("64-bit division is %lld\n", a / 

b);
return EXIT_SUCCESS;

}



Comparing Assembly instruction for both:

udivid3: https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/i386/udivdi3.S

Compiler-rt 

$clang -S -m32 div_64.c -o div-32.S $clang -S div_64.c -o div-64.S



Compiler-rt Sanitizers

• A sanitizer checks certain runtime properties of the code (probe) that's 
inserted by the compiler. It is used to verify program correctness or check 
security flaws.

• In LLVM, this kind of instrumentation is provided with the help of 
compiler-rt as sanitizers



Compiler-rt Sanitizers

• A sanitizer checks certain runtime properties of the code (probe) that's 
inserted by the compiler. It is used to verify program correctness or check 
security flaws.

• In LLVM, this kind of instrumentation is provided with the help of 
compiler-rt as sanitizers

• ASAN: Address Sanitizer to detect use-after free, buffer-overflow and leaks
• UBSAN: Undefined Behavior Sanitizer
• MSAN: Memory Sanitizer
• TSAN: Thread Sanitizer to detect race conditions and deadlocks



$ clang -rtlib=compiler-rt -fsanitize=address -O1 -fno-omit-frame-pointer -g test.c -o test
$./test

Address Sanitizer: in action
int main() {

char *x = (char*)malloc(10 * sizeof(char*));
free(x);
return x[5];

}



How to build Compiler-rt 
Sanitizers?



• Build with LLVM
-DLLVM_ENABLE_PROJECTS="clang;compiler-rt"

Or
-DLLVM_ENABLE_RUNTIMES="compiler-rt"

• Separate Build
Require llvm-config, build llvm first 
$cmake ../compiler-rt -DLLVM_CONFIG_PATH=</path/to/llvm-config> –G

<generator> -B <build_dir>

Use any Generator – Ninja or Unix Makefiles
$ninja –C <build_dir>

LLVM with compiler-rt



With clang build:
$cmake -B build -G Ninja -DLLVM_ENABLE_PROJECTS="clang;compiler-rt"
-DCOMPILER_RT_BUILD_SANITIZERS=ON -DLLVM_TARGETS_TO_BUILD=X86 LLVM_OPTIMIZED_TABLEGEN=ON -
DCMAKE_BUILD_TYPE=Release llvm/

Generated config:
-- Builtin supported architectures: x86_64
-- Generated Sanitizer SUPPORTED_TOOLS list on "Linux" is "asan;lsan;msan;tsan;ubsan"
-- sanitizer_common tests on "Linux" will run against "asan;lsan;msan;tsan;ubsan"
-- Supported architectures for crt: x86_64

Enabling sanitizers with compiler-rt



With clang build:
$cmake -B build -G Ninja -DLLVM_ENABLE_PROJECTS="clang;compiler-rt"
-DCOMPILER_RT_BUILD_SANITIZERS=ON -DLLVM_TARGETS_TO_BUILD=X86 LLVM_OPTIMIZED_TABLEGEN=ON -
DCMAKE_BUILD_TYPE=Release llvm/

After build and installation:

Enabling sanitizers with compiler-rt



With standalone build:
$cmake -B build-compiler-rt compiler-rt -DLLVM_CONFIG_PATH=build/bin/llvm-config

-DCOMPILER_RT_BUILD_SANITIZERS=ON -G Ninja

Generated config:

Enabling sanitizers with compiler-rt



$ cmake with options
-G Ninja
-DCMAKE_AR=/path/to/llvm-ar
-DCMAKE_ASM_COMPILER_TARGET="arm-linux-gnueabihf"
-DCMAKE_ASM_FLAGS="build-c-flags"
-DCMAKE_C_COMPILER=/path/to/clang
-DCMAKE_C_COMPILER_TARGET="arm-linux-gnueabihf"
-DCMAKE_C_FLAGS="build-c-flags"
-DCMAKE_EXE_LINKER_FLAGS="-fuse-ld=lld"
-DCMAKE_NM=/path/to/llvm-nm
-DCMAKE_RANLIB=/path/to/llvm-ranlib
-DCOMPILER_RT_BUILD_BUILTINS=ON
-DCOMPILER_RT_BUILD_LIBFUZZER=ON
-DCOMPILER_RT_BUILD_MEMPROF=ON
-DCOMPILER_RT_BUILD_PROFILE=ON
-DCOMPILER_RT_BUILD_SANITIZERS=ON
-DCOMPILER_RT_BUILD_XRAY=OFF
-DCOMPILER_RT_DEFAULT_TARGET_ONLY=ON
-DLLVM_CONFIG_PATH=/path/to/llvm-config

Cross-compiling compiler-rt sanitizers



Making it a bit easier for 
embedded devices: meta-clang



Compiler-rt sanitizers in meta-clang

• Add meta-clang layer – lldb, cross-compiler, sanitizer
$ bitbake-layers add-layer meta-clang



Compiler-rt sanitizers in meta-clang

• To build clang SDK:
CLANGSDK=1 in local.conf

• To use clang as default toolchain:
TOOLCHAIN = "clang"

• To use LLVM Runtime:
RUNTIME = "llvm"

• To build compiler-rt and compiler-rt-sanitizer in SDK add in local.conf or in
packagegroups:
TOOLCHAIN_HOST_TASK:append = " nativesdk-compiler-rt nativesdk-compiler-rt-
sanitizers

TOOLCHAIN_TARGET_TASK:append = " compiler-rt-dev compiler-rt-staticdev compiler-
rt sanitizers-dev compiler-rt-sanitizers-staticdev"



Compiler-rt sanitizers in meta-clang

• To use SDK:
$ sh oecore-x86_64-cortexa15t2hf-neon-toolchain-nodistro.0.sh //Install SDK
$ source environment-setup-cortexa9hf-neon-poky-linux-gnueabi

• To cross-compile with clang :
$ {CLANGCC} -rtlib=compiler-rt -fsanitize=address test-sanitizer.c -o test

• To test in Qemu :
$ qemu-arm -L <path_to_sysroot> ./test-sanitizer –v



How Compiler-rt Sanitizers 
work?



Compile without sanitizer and run:
$clang test-overflow.c -o test
./test 1 2 4 4 
Segmentation fault (core dumped)

Address Sanitizer: a deep dive
int main(int argc, char **argv) {
int buffer[2];
for (int i = 1; i < argc; ++i)

buffer[i-1] = atoi(argv[i]);
for (int i = 1; i < argc; ++i)

printf("%d ", buffer[i-1]);
return 0;

}



Compile and run:
$clang -rtlib=compiler-rt -fsanitize=address -O1 -fno-omit-frame-pointer

test-overflow.c -o test

Address Sanitizer: a deep dive
int main(int argc, char **argv) {
int buffer[2];
for (int i = 1; i < argc; ++i)

buffer[i-1] = atoi(argv[i]);
for (int i = 1; i < argc; ++i)

printf("%d ", buffer[i-1]);
return 0;

}



Address Sanitizer: a deep dive
=================================================================
==19270==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x3fffdb38 at pc 0x400f6418 
bp 0x3fffdb18 sp 0x3fffdb14
WRITE of size 4 at 0x3fffdb38 thread T0

#0 0x400f6414 in main /home/mamta/fosdem/sdk-test/test-overflow.c:9:17
#1 0x3f5818ec (/lib/libc.so.6+0x218ec) (BuildId: d34a05151f021dd285dc5f185d4029a0d135ab64)
#2 0x3f5819f4 (/lib/libc.so.6+0x219f4) (BuildId: d34a05151f021dd285dc5f185d4029a0d135ab64)

Address 0x3fffdb38 is located in stack of thread T0 at offset 24 in frame
#0 0x400f62a4 in main /home/mamta/fosdem/sdk-test/test-overflow.c:4

This frame has 1 object(s):
[16, 24) 'buffer' (line 6) <== Memory access at offset 24 overflows this variable

HINT: this may be a false positive if your program uses some custom stack unwind mechanism, 
swapcontext or vfork

(longjmp and C++ exceptions *are* supported)
SUMMARY: AddressSanitizer: stack-buffer-overflow /home/mamta/fosdem/sdk-test/test-
overflow.c:9:17 in main



Address Sanitizer: a deep dive
int main(int argc, char **argv) {
int buffer[2];
for (int i = 1; i < argc; ++i)

buffer[i-1] = atoi(argv[i]);
for (int i = 1; i < argc; ++i)

printf("%d ", buffer[i-1]);
return 0;

}

int main(int argc, char **argv) {
int buffer[2];
for (int i = 1; i < argc; ++i)

if (i>2){
notifyerror();

}

buffer[i-1] = atoi(argv[i]);
for (int i = 1; i < argc; ++i)

printf("%d ", buffer[i-1]);
return 0;

}

After adding the sanitizer instrumentation



Address Sanitizer: a deep dive
int main(int argc, char **argv) {
int buffer[2];
for (int i = 1; i < argc; ++i)

buffer[i-1] = atoi(argv[i]);
for (int i = 1; i < argc; ++i)

printf("%d ", buffer[i-1]);
return 0;

}

int main(int argc, char **argv) {
int buffer[2];
for (int i = 1; i < argc; ++i)

if (i>2) {
notifyerror();

}

buffer[i-1] = atoi(argv[i]);
for (int i = 1; i < argc; ++i)

printf("%d ", buffer[i-1]);
return 0;

}

Memory that shouldn’t be accessed is poisoned

if (IsPoisoned(buffer)) {
ReportError(buffer, kAccessSize, kIsWrite);

}



Address Sanitizer: a deep dive
SUMMARY: AddressSanitizer: stack-buffer-overflow /home/mamta/fosdem/sdk-test/test-overflow.c:9:17 in main
Shadow bytes around the buggy address:

0x27fffb10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=>0x27fffb60: 00 00 00 00 f1 f1 00[f3]f3 f3 00 00 00 00 00 00
0x27fffb70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffb90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffba0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffbb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07 
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5

Stack use after scope: f8

Shadow Memory and
Application Memory



Address Sanitizer: a deep dive
SUMMARY: AddressSanitizer: stack-buffer-overflow /home/mamta/fosdem/sdk-test/test-overflow.c:9:17 in main
Shadow bytes around the buggy address:

0x27fffb10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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0x27fffb70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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0x27fffb90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffba0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x27fffbb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07 
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5

Stack use after scope: f8

Shadow Memory and
Application Memory



Outlook



Outlook

• Great tool to find bugs in runtime for complex 
applications

• By using sanitizers, we can improve development 
quality with ease and with high precision

• Increases code size but still faster than Valgrind
• Still not all architectures are supported uniformly



Questions ?

Write to me or connect




