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The problem

Embedded controller hardware

Commodity
OS

EXCHANGE
DATA

3

Air Compressor

Train Bogie

Industrial 
Robot

Cyber-Physical 
Systems

IO

Industry wants to save costs by 
integrating safety-critical 
applications and commodity OSs 
on a single hardware system
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The problem – Isolation
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Bugs in commodity OSs can crash 
safety-critical applications, 
compromising availability 

Security vulnerabilities in commodity 
OSs compromise platform integrity 
and confidentiality 
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The problem – Real-time execution
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Safety-critical applications 
have real-time execution 
requirements
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The problem – Peripheral sharing
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A commodity OS should be able to access 
peripherals, but can deny availability, 
compromising safety-critical applications 
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The problem - Requirements
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Can we ensure availability for safety-

critical applications while running a 

commodity OS on the same system 

with little developer impact?

1. Isolation of critical applications

2. Real-time execution of critical applications

3. Transparent sharing of peripherals



Threat model

› Strong remote adversary with root privileges

› Denial of Service for safety-critical applications

› Assumptions
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Arm TrustZone

› Hardware based isolation

Two security states &

two address spaces

Confidentiality & Integrity

› Integrated in high and low-end

› OP-TEE

Open source TEE implementation

Works with Linux

Requirement 1 – Isolation of critical applications
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Architecture

1. Requirement 1: 

Isolation of critical applications

2. Requirement 2:

Real-time execution of critical applications

3. Requirement 3:

Transparent sharing of peripherals

(with minimal developer overhead)

4. Use case:

Monitoring of Linux kernel
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Real-Time Secure Scheduler

› Periodic Interrupt

Absolute priority

Protected from Normal World

› FreeRTOS

Well-known & relatively small

Task prioritization & preemption

Requirement 2 – Real-time execution of critical applications
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Driver splitting
Requirement 3 – Transparent sharing of peripherals
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Driver splitting
Requirement 3 – Transparent sharing of peripherals
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Driver splitting
Requirement 3 – Transparent sharing of peripherals
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› Secure Driver

Security policies

Sharing logic

› Only driver developers 

need to care



Peripheral access for Normal World

› Read & Write access

GlobalPlatfom APIs

Requirement 3 – Transparent sharing of peripherals
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Peripheral access for Normal World

› Read & Write access

GlobalPlatfom APIs

› Peripheral Interrupt

Notification system

Interrupt in Linux kernel

Publish-Subscribe

Requirement 3 – Transparent sharing of peripherals
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Use case: Monitoring Linux

› Check state of Linux kernel

› Challenge – Response

› Remedial action

Kernel dump

Kernel reboot
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Demo: Rebooting Linux

1. Store kernel image at boot

2. Disable all cores

3. Write image to kernel memory

4. Jump to kernel start address
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Conclusion
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YES!

Can we ensure availability for safety-

critical applications while running a 

commodity OS on the same system 

with little developer impact?



1. Leveraging TrustZone isolation

2. Secure scheduling with FreeRTOS

3. Transparent peripheral sharing

Conclusion
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Can we ensure availability for safety-

critical applications while running a 

commodity OS on the same system 

with little developer impact?



Try it yourself!

› Tutorial: https://distrinet-tacos.github.io/documentation

Boundary Devices BD-SL-i.MX6

› OP-TEE documentation: https://optee.readthedocs.io/en/

latest/index.html

› Contact me: tom.vaneyck@kuleuven.be
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