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Cyber-Physical Systems
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The problem
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Industry wants to save costs by
integrating safety-critical
applications and commodity OSs
on a single hardware system
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The problem — Isolation
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Security vulnerabilities in commodity
OSs compromise platform integrity

and confidentiality

EXCHANGE .
Commodity

Bugs in commodity OSs can crash
safety-critical applications,
compromising availability
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The problem — Real-time execution
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/@ Safety-critical applications

have real-time execution
requirements
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The problem — Peripheral sharing
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A commodity OS should be able to access
peripherals, but can deny availability,

compromising safety-critical applications
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The problem - Requirements

Can we ensure availability for safety-
critical applications while running a
commodity OS on the same system

with little developer impact?

1. Isolation of critical applications
2. Real-time execution of critical applications
3. Transparent sharing of peripherals
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Threat model

» Strong remote adversary with root privileges
> Denial of Service for safety-critical applications

»  Assumptions

» Trusted Not trusted
Hardware Everything else
Critical applications
Peripherals
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Arm TrustZone
Requirement 1 — Isolation of critical applications

» Hardware based isolation

Normal World (NW) Secure World (SW)
» Two security states & — N
Untrusted Applications Trusted Applications
two address spaces X x
» Confidentiality & Integrity v v
» Integrated in high and low-end W Ko W Kerne

» OP-TEE

» Open source TEE implementation

A

Secure Monitor

» Works with Linux
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Architecture

/1\
Existing Added Arm U

1. Requirement 1: Infastructure | nfrastructure TrusiZons
Isolation of critical applications Wora Wora

2. Requirement 2; i
Real-time execution of critical applications | oleatons |

3. Requirement 3: i E g
Transparent sharing of peripherals emol 1 Brer °F’;ani.°s¥
(with minimal developer overhead) K SC;;;;H ,. il t Seaure 1,

4. Use case: ) Zr
Monitoring of Linux kernel e oot |
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Real-Time Secure Scheduler
Requirement 2 — Real-time execution of critical applications

» Periodic Interrupt

Periodic ' Max '
» Absolute priority Interrupt |+ 10ps
» Protected from Normal World v E Y
OP-TEE OS|-:»| FreeRTOS |—>»{ Tasks
» FreeRTOS T i )
» Well-known & relatively small ' \dle task
s e : : Corlwtext
» Task prioritization & preemption it
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Driver splitting

Requirement 3 — Transparent sharing of peripherals
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Driver splitting

Requirement 3 — Transparent sharing of peripherals
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Kernel
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Driver splitting

Requirement 3 — Transparent sharing of peripherals

y Secure Driver Normal world Secure world
» Securit lici User | Application Trqsteq
Y POIICIES Application
» Sharing logic $ --------- $ ---------
» Only driver developers Kemel | Driver [« oo
needto care i _________
I Secure
Hardware Peripheral
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Peripheral access for Normal World
Requirement 3 — Transparent sharing of peripherals

)

Read & Write access
» GlobalPlatfom APIs

Normal world

Secure world

. . : Secure Secure
- 1
Application |« Driver : Driver <> Peripheral
|_> GlobalPlatorm| 1 ...
APls Avg.
............................................. AN 123us
OP-TEE Driver |—»| OF-TEE OS
Kernel
L
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Peripheral access for Normal World
Requirement 3 — Transparent sharing of peripherals

» Read & Write access Vomalvotd 1 Secusvark
? GIObalPlatfom APIs Normal World | '”te;mpt Secure World Kvg:
| Notifier [ : Notifier | . ! 68ps |
- ' A Y
» Peripheral Interrupt — ——
Application |€—»{  Driver i Secure 1 | Secure
» Notification system o _ Driver [ Peripheral
+ | GlobalPlatform __ Fom-m--s
» Interrupt in Linux kernel e e L ipe, ]
» Publish-Subscribe OP-TEE Driver (— " T=5 O
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Use case: Monitoring Linux

»y Check state of Linux kernel  Normal world Not’iﬁer Secure world

! Cha”enge_ReSponse Normal World Inte%rupt Secure World
Notifier | @ Notifier :

» Remedial action [ 0 ! @ ______________________________________ o

» Kernel dump

Linux kernel @ > Monitor

» Kernel reboot
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Demo: Rebooting Linux

1. Store kernel image at boot
2. Disable all cores
3. Write image to kernel memory

4. Jump to kernel start address
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Conclusion

Can we ensure availability for safety-
critical applications while running a
commodity OS on the same system

with little developer impact?

YES!
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Conclusion

Can we ensure availability for safety-
critical applications while running a
commodity OS on the same system

with little developer impact?

1. Leveraging TrustZone isolation
2. Secure scheduling with FreeRTOS

3. Transparent peripheral sharing
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Try it yourself!

» Tutorial: https://distrinet-tacos.qgithub.io/documentation

» Boundary Devices BD-SL-i.MX6

» OP-TEE documentation: https://optee.readthedocs.io/en/

latest/index.html

» Contact me: tom.vaneyck@kuleuven.be
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