Keeping safety-critical programs
alive when Linux isn’t able to

Tom Van Eyck — PhD student @ DistriNet

Co-authors: Hamdi Trimech, Majid Salehi,
Thanh-Liem Ta, Sam Michiels,
Danny Hughes, Hassaan Janjua

EEEEIDistriN=t

Cyber-Physical Systems

——q

Air Compressor

Train Bogie
Y

Industrial
Robot

O

EXCHANGE

10 DATA

q 4

[

Safety-critical
applications

TR

Cyber-Physical
Systems

|
|
|
|
|
|
I4—
|
|
|
|
|
|
|

N

N

Commodity
oS

Embedded controller
hardware

Hardware

= DistriN=t

The problem

——q

Air Compressor

Train Bogie
Y

Industrial
Robot

TR

Industry wants to save costs by
integrating safety-critical
applications and commodity OSs
on a single hardware system

-

10
q

Cyber-Physical
Systems

| l

: |

| l

: |

| l

: |

| l

| <=
l

| l

: |

| l

: |

| l

: |

N

EXCHANGE
DATA

Commodity
oS

[

Safety-critical
applications

Embedded controller hardware

= DistriN=t

The problem — Isolation

——q

Security vulnerabilities in commodity
OSs compromise platform integrity

and confidentiality

EXCHANGE .
Commodity

Bugs in commodity OSs can crash
safety-critical applications,
compromising availability

®

| Air Compressor I
. l
, l
. l /
, l
. l
I | 10
! Industrial | [' -
I Robot | Safety-critical
| ;‘..f{‘ryy | applications
|
|

, l
I Cyber-Physical

systems |

Embedded controller hardware

4 = DistriN=t

The problem — Real-time execution

——q

Air Compressor

Train Bogie

Industrial
Robot

Sitie ey

10
q

Cyber-Physical
Systems

|
|
|
|
|
|
I4—
|
|
|
|
|
|
|

\

/@ Safety-critical applications

have real-time execution
requirements

EXCHANGE
DATA
(013

[

Safety-critical
applications

Commodity

Embedded controller hardware

= DistriN=t

The problem — Peripheral sharing

——q

| Air Compressor

Tram Bogle

I

l

I

l

I
= |
4L 2

Industrial

Robot

Cyber-Physical
Systems

|
|
|
LiHie ey |
|
|
|

A commodity OS should be able to access
peripherals, but can deny availability,

compromising safety-critical applications

EXCHANGE

DATA Commodity

oS

[

Safety-critical
applications

Embedded controller hardware

= DistriN=t

The problem - Requirements

Can we ensure availability for safety-
critical applications while running a
commodity OS on the same system

with little developer impact?

1. Isolation of critical applications
2. Real-time execution of critical applications
3. Transparent sharing of peripherals

7 I DistriN=t

Threat model

» Strong remote adversary with root privileges
> Denial of Service for safety-critical applications

» Assumptions

» Trusted Not trusted
Hardware Everything else
Critical applications
Peripherals

8 I DistriN=t

Arm TrustZone
Requirement 1 — Isolation of critical applications

» Hardware based isolation

Normal World (NW) Secure World (SW)
» Two security states & — N
Untrusted Applications Trusted Applications
two address spaces X x
» Confidentiality & Integrity v v
» Integrated in high and low-end W Ko W Kerne

» OP-TEE

» Open source TEE implementation

A

Secure Monitor

» Works with Linux

9 I DistriN=t

Architecture

/1\
Existing Added Arm U

1. Requirement 1: Infastructure | nfrastructure TrusiZons
Isolation of critical applications Wora Wora

2. Requirement 2; i
Real-time execution of critical applications | oleatons |

3. Requirement 3: i E g
Transparent sharing of peripherals emol 1 Brer °F’;ani.°s¥
(with minimal developer overhead) K SC;;;;H ,. il t Seaure 1,

4. Use case:) Zr
Monitoring of Linux kernel e oot |

10 I DistriN=t

Real-Time Secure Scheduler
Requirement 2 — Real-time execution of critical applications

» Periodic Interrupt

Periodic ' Max '
» Absolute priority Interrupt |+ 10ps
» Protected from Normal World v E Y
OP-TEE OS|-:»| FreeRTOS |—>»{ Tasks
» FreeRTOS T i)
» Well-known & relatively small ' \dle task
s e : : Corlwtext
» Task prioritization & preemption it

1 I DistriN=t

Driver splitting

Requirement 3 — Transparent sharing of peripherals

$ _________

Kernel

$ _________

Hardware

Application

Driver

Peripheral

12

I DistriN=t

Driver splitting

Requirement 3 — Transparent sharing of peripherals

$ _________

Kernel

i _________

Hardware

Application

Driver

Peripheral

R

User

Kernel

Hardware

13

Normal world

Application

Secure world

Trusted
Application

Secure
Driver

Secure
Peripheral

I DistriN=t

Driver splitting

Requirement 3 — Transparent sharing of peripherals

y Secure Driver Normal world Secure world
» Securit lici User | Application Trqsteq
Y POIICIES Application
» Sharing logic $ --------- $ ---------
» Only driver developers Kemel | Driver [« oo
needto care i _________
I Secure
Hardware Peripheral
14 P DistriN=t

Peripheral access for Normal World
Requirement 3 — Transparent sharing of peripherals

)

Read & Write access
» GlobalPlatfom APIs

Normal world

Secure world

. . : Secure Secure
- 1
Application |« Driver : Driver <> Peripheral
|_> GlobalPlatorm| 1 ...
APls Avg.
... AN 123us
OP-TEE Driver |—»| OF-TEE OS
Kernel
L
15 EE DistriN=t

Peripheral access for Normal World
Requirement 3 — Transparent sharing of peripherals

» Read & Write access Vomalvotd 1 Secusvark
? GIObalPlatfom APIs Normal World | '”te;mpt Secure World Kvg:
| Notifier [: Notifier | . ! 68ps |
- ' A Y
» Peripheral Interrupt — ——
Application |€—»{ Driver i Secure 1 | Secure
» Notification system o _ Driver [Peripheral
+ | GlobalPlatform __ Fom-m--s
» Interrupt in Linux kernel e e L ipe,]
» Publish-Subscribe OP-TEE Driver (— " T=5 O

16 I DistriN=t

Use case: Monitoring Linux

»y Check state of Linux kernel Normal world Not’iﬁer Secure world

! Cha”enge_ReSponse Normal World Inte%rupt Secure World
Notifier | @ Notifier :

» Remedial action [0 ! @ ______________________________________ o

» Kernel dump

Linux kernel @ > Monitor

» Kernel reboot

17 I DistriN=t

Demo: Rebooting Linux

1. Store kernel image at boot
2. Disable all cores
3. Write image to kernel memory

4. Jump to kernel start address

18 I DistriN=t

Conclusion

Can we ensure availability for safety-
critical applications while running a
commodity OS on the same system

with little developer impact?

YES!

19 I DistriN=t

Conclusion

Can we ensure availability for safety-
critical applications while running a
commodity OS on the same system

with little developer impact?

1. Leveraging TrustZone isolation
2. Secure scheduling with FreeRTOS

3. Transparent peripheral sharing

20 I DistriN=t

Try it yourself!

» Tutorial: https://distrinet-tacos.qgithub.io/documentation

» Boundary Devices BD-SL-i.MX6

» OP-TEE documentation: https://optee.readthedocs.io/en/

latest/index.html

» Contact me: tom.vaneyck@kuleuven.be

21 = DistriN=t

https://distrinet-tacos.github.io/documentation
https://optee.readthedocs.io/en/latest/index.html
https://optee.readthedocs.io/en/latest/index.html
mailto:tom.vaneyck@kuleuven.be

Keeping safety-critical programs
alive when Linux isn’t able to

Tom Van Eyck — tom.vaneyck@kuleuven.be
.. ..) With the support of VLAIO.
Co-authors: Hamdi Trimech, Majid Salehi, This project has received funding from
Thanh-Liem Ta, Sam Michiels, the European Union’s Horizon 2020
research and innovation programme

Danny Hughes, Hassaan Janjua under grant agreement No 101020416.

wiewen DistriN=t R vLao

	Standaardsectie
	Dia 1: Keeping safety-critical programs alive when Linux isn’t able to

	Problem statement
	Dia 2: Cyber-Physical Systems
	Dia 3: The problem
	Dia 4: The problem – Isolation
	Dia 5: The problem – Real-time execution
	Dia 6: The problem – Peripheral sharing
	Dia 7: The problem - Requirements
	Dia 8: Threat model

	Solution
	Dia 9: Arm TrustZone
	Dia 10: Architecture
	Dia 11: Real-Time Secure Scheduler
	Dia 12: Driver splitting
	Dia 13: Driver splitting
	Dia 14: Driver splitting
	Dia 15: Peripheral access for Normal World
	Dia 16: Peripheral access for Normal World

	Use case
	Dia 17: Use case: Monitoring Linux
	Dia 18: Demo: Rebooting Linux

	Conclusion
	Dia 19: Conclusion
	Dia 20: Conclusion
	Dia 21: Try it yourself!
	Dia 22: Keeping safety-critical programs alive when Linux isn’t able to

