
Keeping safety-critical programs 

alive when Linux isn’t able to
Tom Van Eyck – PhD student @ DistriNet
Co-authors: Hamdi Trimech, Majid Salehi,

Thanh-Liem Ta, Sam Michiels,

Danny Hughes, Hassaan Janjua

FOSDEM 2023



Cyber-Physical Systems

Embedded controller 
hardware

Commodity
OS

Safety-critical 
applications

2

Air Compressor

Train Bogie

Industrial 
Robot

Cyber-Physical 
Systems

IO

Hardware

EXCHANGE
DATA



The problem

Embedded controller hardware

Commodity
OS

EXCHANGE
DATA

3

Air Compressor

Train Bogie

Industrial 
Robot

Cyber-Physical 
Systems

IO

Industry wants to save costs by 
integrating safety-critical 
applications and commodity OSs 
on a single hardware system

0

Safety-critical 
applications



The problem – Isolation

EXCHANGE
DATA

Bugs in commodity OSs can crash 
safety-critical applications, 
compromising availability 

Security vulnerabilities in commodity 
OSs compromise platform integrity 
and confidentiality 

1

1

4

Air Compressor

Train Bogie

Industrial 
Robot

Cyber-Physical 
Systems

IO Commodity
OS

Embedded controller hardware

Safety-critical 
applications



The problem – Real-time execution

EXCHANGE
DATA

5

Air Compressor

Train Bogie

Industrial 
Robot

Cyber-Physical 
Systems

IO

Safety-critical applications 
have real-time execution 
requirements

2

Commodity
OS

Embedded controller hardware

Safety-critical 
applications



The problem – Peripheral sharing

EXCHANGE
DATA

6

Air Compressor

Train Bogie

Industrial 
Robot

Cyber-Physical 
Systems

IO Commodity
OS

A commodity OS should be able to access 
peripherals, but can deny availability, 
compromising safety-critical applications 

3

Embedded controller hardware

Safety-critical 
applications



The problem - Requirements

7

Can we ensure availability for safety-

critical applications while running a 

commodity OS on the same system 

with little developer impact?

1. Isolation of critical applications

2. Real-time execution of critical applications

3. Transparent sharing of peripherals



Threat model

› Strong remote adversary with root privileges

› Denial of Service for safety-critical applications

› Assumptions

8

Trusted Not trusted

Hardware Everything else

Critical applications

Peripherals



Arm TrustZone

› Hardware based isolation

Two security states &

two address spaces

Confidentiality & Integrity

› Integrated in high and low-end

› OP-TEE

Open source TEE implementation

Works with Linux

Requirement 1 – Isolation of critical applications

9



Architecture

1. Requirement 1: 

Isolation of critical applications

2. Requirement 2:

Real-time execution of critical applications

3. Requirement 3:

Transparent sharing of peripherals

(with minimal developer overhead)

4. Use case:

Monitoring of Linux kernel

10

2

3

4

1



Real-Time Secure Scheduler

› Periodic Interrupt

Absolute priority

Protected from Normal World

› FreeRTOS

Well-known & relatively small

Task prioritization & preemption

Requirement 2 – Real-time execution of critical applications

11



Driver splitting
Requirement 3 – Transparent sharing of peripherals

12



Driver splitting
Requirement 3 – Transparent sharing of peripherals

13



Driver splitting
Requirement 3 – Transparent sharing of peripherals

14

› Secure Driver

Security policies

Sharing logic

› Only driver developers 

need to care



Peripheral access for Normal World

› Read & Write access

GlobalPlatfom APIs

Requirement 3 – Transparent sharing of peripherals

15



Peripheral access for Normal World

› Read & Write access

GlobalPlatfom APIs

› Peripheral Interrupt

Notification system

Interrupt in Linux kernel

Publish-Subscribe

Requirement 3 – Transparent sharing of peripherals

16



Use case: Monitoring Linux

› Check state of Linux kernel

› Challenge – Response

› Remedial action

Kernel dump

Kernel reboot

17



Demo: Rebooting Linux

1. Store kernel image at boot

2. Disable all cores

3. Write image to kernel memory

4. Jump to kernel start address

18



Conclusion

19

YES!

Can we ensure availability for safety-

critical applications while running a 

commodity OS on the same system 

with little developer impact?



1. Leveraging TrustZone isolation

2. Secure scheduling with FreeRTOS

3. Transparent peripheral sharing

Conclusion

20

Can we ensure availability for safety-

critical applications while running a 

commodity OS on the same system 

with little developer impact?



Try it yourself!

› Tutorial: https://distrinet-tacos.github.io/documentation

Boundary Devices BD-SL-i.MX6

› OP-TEE documentation: https://optee.readthedocs.io/en/

latest/index.html

› Contact me: tom.vaneyck@kuleuven.be

21

https://distrinet-tacos.github.io/documentation
https://optee.readthedocs.io/en/latest/index.html
https://optee.readthedocs.io/en/latest/index.html
mailto:tom.vaneyck@kuleuven.be


Keeping safety-critical programs 

alive when Linux isn’t able to
Tom Van Eyck – tom.vaneyck@kuleuven.be

This project has received funding from

the European Union’s Horizon 2020

research and innovation programme

under grant agreement No 101020416.

With the support of VLAIO.
Co-authors: Hamdi Trimech, Majid Salehi,

Thanh-Liem Ta, Sam Michiels,

Danny Hughes, Hassaan Janjua

FOSDEM 2023


	Standaardsectie
	Dia 1: Keeping safety-critical programs alive when Linux isn’t able to

	Problem statement
	Dia 2: Cyber-Physical Systems
	Dia 3: The problem
	Dia 4: The problem – Isolation
	Dia 5: The problem – Real-time execution
	Dia 6: The problem – Peripheral sharing
	Dia 7: The problem - Requirements
	Dia 8: Threat model

	Solution
	Dia 9: Arm TrustZone
	Dia 10: Architecture
	Dia 11: Real-Time Secure Scheduler
	Dia 12: Driver splitting
	Dia 13: Driver splitting
	Dia 14: Driver splitting
	Dia 15: Peripheral access for Normal World
	Dia 16: Peripheral access for Normal World

	Use case
	Dia 17: Use case: Monitoring Linux
	Dia 18: Demo: Rebooting Linux

	Conclusion
	Dia 19: Conclusion
	Dia 20: Conclusion
	Dia 21: Try it yourself!
	Dia 22: Keeping safety-critical programs alive when Linux isn’t able to


