
Walking native
stacks in BPF
without frame
pointers

Vaishali Thakkar <vaishali.thakkar@polarsignals.com>
Javier Honduvilla Coto <javier@polarsignals.com>

Agenda

● Why the need for a DWARF-based stack walker in BPF

● Design of our stack walker

● Making it production ready

● Learnings so far

● Future plans

Native stack walker in BPF using DWARF: Why?

● Stack walking and history of frame pointers

● Current state of the world
○ How hyperscalers solve this problem

○ Recent discussions in Fedora mailing list - TL;DR: will be enabled Fedora 38 ,

late-april release

○ Go runtime

○ Apple ecosystem

○ Simple Frame (previously known as CTF format)

● We want to support all the runtimes and distributions

Native stack walker in BPF using DWARF

● If not frame pointers then what?
○ .eh_frame/.debug_frame and DWARF CFI

○ How ORC does it?

Motivation

● If not frame pointers then what?

● Perf and libunwind
○ Security

○ Performance

Motivation

● If not frame pointers then what?

● Perf and libunwind

● BPF advantages
○ Higher safety

○ Lower barrier of entry

.eh_frame

● Call Frame Information (CFI)

● Space efficient and versatile

● Encoded unwind tables

● CFI opcodes

● Two main layers
○ State machine encoded in a VM - only need DW_CFA_remember_state and

DW_CFA_restore_state

○ A special opcode that contains another set of opcode

Design

Unwind tables generation
BPF maps

BPF program

Kernel

Userspace

BPF management
- Creating maps
- Loading program
- Writing in maps
- Reading output
- etc.

Design

● Read the initial registers
○ Instruction pointer $rip

Design

● Read the initial registers
○ Instruction pointer $rip

○ Stack pointer $rsp

Design

● Read the initial registers
○ Instruction pointer $rip

○ Stack pointer $rsp

○ Frame pointer $rbp

Design

● Read the initial registers
○ Instruction pointer $rip

○ Stack pointer $rsp

○ Frame pointer $rbp

● While unwind_frame_count <= MAX_STACK_DEPTH

○ Find the unwind table row for the PC

Design

● Read the initial registers
○ Instruction pointer $rip

○ Stack pointer $rsp

○ Frame pointer $rbp

● While unwind_frame_count <= MAX_STACK_DEPTH

○ Find the unwind table row for the PC

○ Add instruction pointer to the stack

Design

● Read the initial registers
○ Instruction pointer $rip

○ Stack pointer $rsp

○ Frame pointer $rbp

● While unwind_frame_count <= MAX_STACK_DEPTH

○ Find the unwind table row for the PC

○ Add instruction pointer to the stack

○ Calculate the previous frame's stack pointer

Design

● Read the initial registers
○ Instruction pointer $rip

○ Stack pointer $rsp

○ Frame pointer $rbp

● While unwind_frame_count <= MAX_STACK_DEPTH

○ Find the unwind table row for the PC

○ Add instruction pointer to the stack

○ Calculate the previous frame's stack pointer

○ Update the registers with the calculated values for the previous frame

Design

● Read the initial registers
○ Instruction pointer $rip

○ Stack pointer $rsp

○ Frame pointer $rbp

● While unwind_frame_count <= MAX_STACK_DEPTH
○ Find the unwind table row for the PC

○ Add instruction pointer to the stack

○ Calculate the previous frame's stack pointer

○ Updates the registers with the calculated values for the previous frame

○ Continue with the next frame - go back to adding instruction pointer

Storing the unwind information

● In-process, hijacking the process using ptrace(2) +

mmap(2) + mlock(2)

○ Altering the execution flow of the program is a no-go

○ We must lock this memory

○ When to clean up?

○ Sharing of memory is harder, accounting for our overhead is also harder

Storing the unwind information

● BPF maps

○ A <bytes,bytes> hash-table

○ Always locked in memory, BPF_F_NO_PREALLOC is forbidden in tracing

programs

○ We can reuse the same tables for multiple processes that share the

same mappings

Storing the unwind information

libc mysql zlib systemd (unused)

Storing the unwind information – sharding

shard 0

shard 1

shard 2

shard 3

Storing the unwind information – sharding

shard 0

shard 1

shard 2

shard 3

systemd

Storing the unwind information – sharding

shard 0

shard 1

shard 2

shard 3

systemd

chunk1 c2

Storing the unwind information – sharding

process
- pid

mapping 0

mapping 1

mapping 2
chunk 0

chunk 1

chunk 2

shard
- low_index
- high_index

(The above are stored in BPF maps)

Making our unwinder scale

● Unwind table for each executable mapping
○ Skip table generation most of the time (~0.9% of our CPU cycles in prod)

● This is suspiciously similar to a bump allocator

The unwinding process – in-depth

● pid

The unwinding process – in-depth

● pid
○ Do we have unwind information?

The unwinding process – in-depth

● pid
○ Do we have unwind information?

○ Find mapping with our current instruction pointer

The unwinding process – in-depth

● pid
○ Do we have unwind information?

○ Find mapping with our current instruction pointer

○ Find chunk

The unwinding process – in-depth

● pid
○ Do we have unwind information?

○ Find mapping with our current instruction pointer

○ Find chunk

○ We have the shard information

The unwinding process – in-depth

● pid
○ Do we have unwind information?

○ Find mapping with our current instruction pointer

○ Find chunk

○ We have the shard information

○ Let’s find the unwind info

The unwinding process – in-depth

● pid
○ Do we have unwind information?

○ Find mapping with our current instruction pointer

○ Find chunk

○ We have the shard information

○ Let’s find the unwind info

○ Binary search in the table of up to 250k entries (~8 iterations)

The unwinding process – in-depth

● pid
○ Do we have unwind information?

○ Find mapping with our current instruction pointer

○ Find chunk

○ We have the shard information

○ Let’s find the unwind info

○ Binary search in the table of up to 250k entries (~8 iterations)

○ Apply unwind action, add frame to stack-trace, continue with next frame

The unwinding process – in-depth

● If the stack is “correct”
○ We hash the addresses

○ Add the hash to a map

○ Bump a counter

BPF challenges

● Memlock, being aware of memory usage

● BPF verifier woes
○ Stack size: we rely on BPF maps to store state

○ Program size:

■ BPF tail calls to have bigger programs

■ Bounded loops (and bpf_loop) if you don’t need to support older kernels 🥲

Performance in userspace

● Many Go APIs aren’t designed with performance in mind

○ DWARF and ELF library in the stdlib

○ binary.Read & binary.Write allocate in the fast path (!!!)

● Profiling our profiler

○ Lots of found opportunities

○ But there’s more work to do!

Testing

● Thorough unit testing coverage for most of the core functions

● Snapshot testing for unwind tables ❤

Testing – snapshot testing

Testing – snapshot testing

Takeaways

● De-risking the project

● Invest early and often in automated testing

● BPF programs must have kernel tests

● Measure, profile, test…
○ but make sure to do it in prod do it in prod, too!

Testing in multiple kernels

Takeaways – different environments

● Different environments can radically change the performance profile
○ Different hardware

○ Different configuration (pprof…)

Different hardware – slow disks

Different configuration – signals in prod

Different configuration – signals in prod

● Go’s signal-based profiler uses SIGPROF

● Which interrupts our process’ execution

● Our BPF program is loaded and verified by the kernel

● Gets interrupted

● Libbpf retries up to 5 times

● And then we crash!

Other considerations

● Short-lived processes

● DWARF CFI vs our format

● Benchmarking the BPF code

Other considerations – DWARF CFI vs our format

typedef struct {

 u64 pc;

 u16 _reserved_do_not_use;

 u8 cfa_type;

 u8 rbp_type;

 s16 cfa_offset;

 s16 rbp_offset;

} stack_unwind_row_t;

Other considerations – DWARF CFI vs our format

typedef struct {

 u64 pc; // 🧐
 u16 _reserved_do_not_use; // 🧐
 u8 cfa_type;

 u8 rbp_type;

 s16 cfa_offset;

 s16 rbp_offset;

} stack_unwind_row_t;

Other considerations – DWARF CFI vs our format

Other considerations – DWARF CFI vs our format

● We support parsing every DWARF CFI opcode

● Only can unwind if
○ Previous frame stack pointer (CFA) is based off the current stack pointer or frame

pointer + offsets

○ DWARF expressions in Procedure Linkage Tables (PLT) for CFA

○ We are working on:

■ CFA := any_register + offset

■ Frame pointer defined by an known expression

Other considerations – DWARF CFI vs our format

● 2 DWARF expressions account for the ~50% of what we’ve seen in

the wild (https://github.com/parca-dev/parca-agent/pull/1058)

● CFA based off not $rbp or $rsp rarely happens

● Some other instances that very rarely occur

https://github.com/parca-dev/parca-agent/pull/1058

Other considerations – BFP performance

● Walking stacks of a host running Postgres, CPython, Ruby (MRI)

applications (some with >90 frames)

○ P50: 285ns

○ P90: 370ns

○ Max: 428ns

(kernel 6.0.18 with Intel i7-8700K (late ‘17))

Profiling Ruby with BPF – rbperf

● Knowledge of the ABI of each interpreter version

● Stack walker implemented in BPF

○ Directly extract the function names and other information off Ruby’s

memory

What’s coming in Parca

● Mixed unwinding mode

● arm64 support

● Enabling this feature by default

● Support for other runtimes (JVM, Ruby, etc)

We ♥ OSS – contributors welcome!

● Everything we’ve talked about here is fully OSS

○ Userspace: Apache 2.0

○ BPF: GPL

References

● Blogpost:

https://www.polarsignals.com/blog/posts/2022/11/29/profiling-without-frame-pointers/

● Our project website: https://www.parca.dev/

○ Agent: https://github.com/parca-dev/parca-agent

○ BPF code: https://github.com/parca-dev/parca-agent/tree/main/bpf/cpu

● Previous talk at Linux Plumbers conference:

https://www.youtube.com/watch?v=Gr1rrSzvqfg

● rbperf: https://github.com/javierhonduco/rbperf

https://www.polarsignals.com/blog/posts/2022/11/29/profiling-without-frame-pointers/
https://www.parca.dev/
https://github.com/parca-dev/parca-agent
https://github.com/parca-dev/parca-agent/tree/main/bpf/cpu
https://www.youtube.com/watch?v=Gr1rrSzvqfg
https://github.com/javierhonduco/rbperf

Thank you!

Vaishali <vaishali.thakkar@polarsignals.com>

Mastodon: @vaishali@hachyderm.io

Javier <javier@polarsignals.com>

Mastodon: @javierhc@hachyderm.io

mailto:vaishali.thakkar@polarsignals.com
mailto:javier@polarsignals.com

