
SHORTER FEEDBACK LOOPS WITH LIVEBOOK
Linus De Meyere

github.com/linusdm/livebook_fosdem

https://github.com/linusdm/livebook_fosdem


WHO KNOWS LIVEBOOK?
📕



GOALS
Introduction to Livebook
How to get Livebook
Livebook stories from the trenches
Starting in the middle with Livebook







LEARNING



IT'S JUST MARKDOWN





IT'S JUST MARKDOWN



Automatically save to filesystem
Autocompletion
Inline documentation
Code formatting



REPRODUCIBILITY
No global mutable state
Sequential model for running code cells
Efficient change tracking - stale cells
Branching sections
Package management in the notebook itself



ERLANG VM PROCESSES AND DISTRIBUTION EVERYWHERE



INSTALLATION
 (Windows and Mac)

Escript
Docker image
In the cloud - somewhere remote

Desktop application

mix escript.install hex livebook

docker run -p 8080:8080 -p 8081:8081 --pull always livebook/liveb

https://livebook.dev/#install


STARTING
run the desktop app, or

^ lots of startup/deployment options here

livebook server

livebook server new

livebook server path/to/directory/

livebook server path/to/some.livemd

livebook server https://example.com/some_public.livemd

livebook server --help



Every project manager

“Start with the riskiest parts of your
development”



BENEFITS
Start in the middle
Increase transparancy
Document the process
Livebooks as shareable deliverables
Lower the barriers to entry (also for non-coders)



CONTEXT
Small software shop doing custom development
Many projects at the same time
Small teams (teams of two)
Important to have good DX
Good documentation really helps
Communication with clients is key

https://zenjoy.be/


CASE #1

EXPLORING AN UNDOCUMENTED LEGACY API
Low level TCP protocol
Use :gen_tcp to send and receive messages
Stub out the server for end-to-end scenarios
Great for documentation purposes (no meta info
available)
Collaborate and create a shared understanding of
the system



Documenting the various messages

^ pattern matching is awesome 💜



CASE #1

EXPLORING AN UNDOCUMENTED LEGACY API
Reproduce bugs (can be referenced in github issues)
Facilitates discussions on the right level of
abstraction
Verify bugfixes, without having to integrate in a real
application
idea: record test fixtures (thanks )
idea: generate template for documentation

Adam Lancaster

https://youtu.be/z4O7YnqqUI4


Mix project integration
leans on Mix.install/2

https://hexdocs.pm/mix/1.14.3/Mix.html#install/2


TYPICAL LIFECYCLE WITH LIVEBOOK
1. Experiment with code in Livebook
2. Maybe add tests
3. Add :path dependency on local mix project
4. Promote reusable code to local mix project



Manipulating stub server responses





Managing secrets

^ don't keep sensitive data in your notebooks



CASE #2

CONCURRENT ETL PIPELINE
CSV → Postgres
Concurrent data processing in Livebook
The power of processes is available
Fun with 
Using Ecto from Livebook

Flow

https://hex.pm/packages/flow




CASE #3

CONNECTING TO AN ONLINE ENVIRONMENT
Remember, it's all erlang distribution behind the
scenes
You need your node's name/sname and cookie
Great for one-off tasks
Setup your first admin user
Poke around your live system
Implement features without a UI yet
Remember, it's all live!



Change your runtime settings to "attached node"



TESTING IN LIVEBOOK
Doctests are executed automatically
You can write regular ExUnit test cases



DBG() IN LIVEBOOK
dbg() was recently added (elixir v1.14)
Manipulate your pipeline live



OTHER RESOURCES
: open source curriculum to

help students learn Elixir
: Neural Networks in Livebook

(GPT2, Stable Diffusion, ... on your computer!)

The DockYard Academy

Project Bumblebee

https://github.com/DockYard-Academy/curriculum
https://hexdocs.pm/bumblebee


NO NUMBATS HERE!




