-

SHORTER FEEDBACK LOOPS WITH LIVEBOOK

Linus De Meyere

github.com/linusdm/livebook_fosdem

https://github.com/linusdm/livebook_fosdem

WHO KNOWS LIVEBOOK?
S

GOALS

ntroduction to Livebook

How to get Livebook

_ivebook stories from the trenches
Starting in the middle with Livebook

O

Livebook vos:

Home
Learn

Settings

Shut Down

Home

Q /Users/linus/dev/

Import New notebook

data_schema

livebook

amazing_elixir blog
dovecot flatpickr_phoenix_exa... flow
livebook_fosdem one-to-many-form single_file_phx_bumbil...

LEARN

‘r

Welcome to Livebook

Get to know Livebook, see how it
works, and learn its features.

RUNNING SESSIONS (1)

My first Livebook
/Users/linus/dev/livebook_fosdem/start.livemd

0 MB Created 3 minutes ago

P | @

WAV 4

Distributed portals with Elixir

A fast-paced introduction to Elixir by
building distributed data-transfer
portals.

c 27.2 GB/ 34.4 GB

Seeall >

Elixir and Livebook

Learn how to use some of their
unique features together.

i Edit Date v

My first Livebook

ix.install([

{:kino, "~> 0.8.1"}
D Evaluated* @

nil

Some title

1 I0.puts("Hello from Livebook!") Evaluated @

Hello from Livebook!

1ok

Any markdown goes here

LEARNING

Learn

Livebook voss

Check out a number of examples showcasing various parts of the Elixir ecosystem.
Home Click on any notebook you like and start playing around with it!

Learn

Settings

Welcome to Livebook

Get to know Livebook, see how it works, and learn its features.

Open notebook

[{ s
Distributed portals with Elixir Elixir and Livebook Introduction to Kino
A fast-paced introduction to Elixir by Learn how to use some of their Make your notebooks interactive
building distributed data-transfer unique features together. with inputs, controls, and more.
portals.
Plotting with Vegalite Maps with MapLibre
Learn how to quickly create Seamlessly plot maps using
numerous plots for your data. geospatial and tabular data.

’ 5 notebooks
- L L T PRI V4 PN

IT'S JUST MARKDOWN

¥ main ~ livebook [lib [livebook / notebook [learn [intro_to_livebook.livemd Go to file

o paulo-valim Rename the Explore section to Learn (#1424) .. Latest commit 285bc92 on Sep 21, 2022) History
A 2 contributors e @

‘= 158 lines (112 sloc) 5.12 KB Raw Blame g v U

Welcome to Livebook

Basic usage

Livebook is a tool for crafting interactive and collaborative code notebooks.

Each notebook consists of a number of cells, which serve as primary building blocks. There are Markdown cells (such as this one) that
allow you to describe your work and Code cells to run your Elixir code!

To insert a new cell move your cursor between cells and click one of the revealed buttons. &}

This is a Code cell - as the name suggests that's where the code goes.
To evaluate this cell, you can either press the "Evaluate" button above
or use “Ctrl + Enter’ (or Cmd + Enter on a Mac)!

message = "hey, grab yourself a cup of &"
Subsequent cells have access to the bindings you've defined:
String.replace(message, "G", "=")

Note however that bindings are not global, so each cell sees only stuff that goes above itself. This approach helps to keep the notebook
clean and predictable as you keep working on it!

Sections

IT'S JUST MARKDOWN

livebook / lib / livebook [notebook [learn | intro_to_livebook.livemd in livebook-dev:main Cancel changes

<> Edit file & Preview Spaces ¥ 2 % Softwrap *

Welcome to Livebook

Basic usage

Each notebook consists of a number of cells, which serve as primary building blocks.
There are xkMarkdownxx cells (such as this one) that allow you to describe your work

1
2
3
4
5 Livebook is a tool for crafting sx*interactivexx and *xcollaborativexx code notebooks.
6
7
8
9 and **Codex* cells to run your Elixir code!

10

11 To insert a new cell move your cursor between cells and click one of the revealed buttons. 9
12

13 " lelixir

14 # This is a Code cell - as the name suggests that's where the code goes.
15 # To evaluate this cell, you can either press the "Evaluate" button above
16 # or use "Ctrl + Enter’ (or Cmd + Enter on a Mac)!

18 message = "hey, grab yourself a cup of &"

21 Subsequent cells have access to the bindings you've defined:
23 " lelixir

24 String.replace(message, "&", "=")

27 Note however that bindings are not global, so each cell xsees* only stuff that goes
28 above itself. This approach helps to keep the notebook clean and predictable
29 as you keep working on it!

31 ## Sections

33 You can leverage so called sksections*x to nicely group related cells together.
34 Click on the "Book" icon (<i class="ri-livebook-sections"></i>) in the sidebar

e Automatically save to filesystem
e Autocompletion

e |nline documentation

e Code formatting

REPRODUCIBILITY

No global mutable state

Sequential model for running code cells
Efficient change tracking - stale cells
Branching sections

Package management in the notebook itself

ERLANG VM PROCESSES AND DISTRIBUTION EVERYWHERE

Runtime
Livebook
Clients Erlang distribution——® Code
Browser #1 —WebSockets—__
_—Erlang distribution——® Smart cell
Session
——Erlang distribution—— Output #1
Browser #2 —WebSockets™ |
Erlang distribution——% Output #2

INSTALLATION

e Desktop application (Windows and Mac)
e Escript

e Docker image

e |Inthecloud-somewhere remote

mix escript.install hex livebook

docker run -p 8080:8080 -p 8081:8081 --pull always livebook/liveb

https://livebook.dev/#install

STARTING

run the desktop app, or

livebook server

livebook server new

livebook server path/to/directory/

livebook server path/to/some.livemd

livebook server https://example.com/some public.livemd

livebook server --help

* lots of startup/deployment options here

“Start with the riskiest parts of your
development”

Every project manager

BENEFITS

Start in the middle

ncrease transparancy

Document the process

_ivebooks as shareable deliverables

L.ower the barriers to entry (also for non-coders)

CONTEXT

e Small software shop doing custom development
e Many projects at the same time

e Small teams (teams of two)

e |[mportant to have good DX

e Good documentation really helps

e Communication with clients is key

= ZEN|oY

https://zenjoy.be/

CASE #1

EXPLORING AN UNDOCUMENTED LEGACY API

e Low level TCP protocol

e Use :gen tcptosendand receive messages

e Stub out the server for end-to-end scenarios

e Great for documentation purposes (no meta info

available)
e Collaborate and create a shared understanding of

the system

Documenting the various messages
Login

Log the user in and get a reference that is used to authenticate subsequent requests.

input [client code, username, password]

Successful login
© Reevaluate v Q&3 @ ~ v [

1 {:o0k, ["10", .send_request_and_receive_response(54, credentials, endpoint)

Evaluated @

{:0k,
[
"10",
"Login OK",

A pattern matching is awesome @

R

CASE #1

EXPLORING AN UNDOCUMENTED LEGACY API

eproduce bugs (can be referenced in github issues)

Facilitates discussions on the right level of
abstraction
Verify bugfixes, without having to integrate in a real

a
IC

oplication
ea: record test fixtures (thanks Adam Lancaster)

IC

ea: generate template for documentation

https://youtu.be/z4O7YnqqUI4

Mix project integration

leans on Mix.install/2

my_app/ .. start.livemd
las>sels E

B config
config.exs . alirp

dev.exs root path = Path.join(DIR
prod.exs

runtime.exs Mix.install(
test.exs [

— I

m lib Hamy app, pathy reok paEhl
B livebooks {ildiho, "= 0. 8° .

= start.livemd i

B priv confiie path: Path ol rost Bath Seopiin/fcaniin cueE)

W test lockfile: Path.join(root_path, "mix.lock")
mix.exs D

(ke ays] e

https://hexdocs.pm/mix/1.14.3/Mix.html#install/2

TYPICAL LIFECYCLE WITH LIVEBOOK

1. Experiment with code in Livebook

2. Maybe add tests
3. Add : path dependency on local mix project

4. Promote reusable code to local mix project

Manipulating stub server responses

frame = NEIOE .render()

fun = fn input ->

.render(frame, input)

{:0k, ["one", "two"]}
end

.nothing() Evaluated @

%{command: 99, reference: "0000000123", request: ["input 1", "input 2"]}

.start_link([{ , ref: :mock_server, fun: fun}], strategy: :onejor‘,oc-q,gfbated*.

{:0k, #PID<0.762.0>}

:ranch.get_port(:mock_server) Evaluated @

51509

Managing secrets

© Reevaluate v @ &8 @ ~ v I

APP SECRETS
Toggle to share with this session

ENDPOINT_CREDENTIALS e «
0

1 credentials = .fetch_env! ("LB_ENDPOINT_CREDENTIALS") |> .split(":")

:ok

Evaluated* @

~ don't keep sensitive data in your notebooks

CASE #2

CONCURRENT ETL PIPELINE

CSV — Postgres

Concurrent data processing in Livebook
The power of processes is available

Fun with Flow

Using Ecto from Livebook

https://hex.pm/packages/flow

inserts
o
1

time

.import_all_flow(model, update_fn: update_fn)

.stream(link: false)
.run()

CASE #3

CONNECTING TO AN ONLINE ENVIRONMENT

e Remember, it's all erlang distribution behind the
scenes

e You need your node's name/sname and cookie

e Great for one-off tasks

e Setup your first admin user

e Poke around your live system

e I[mplement features without a Ul yet

e Remember, it's all live!

Change your runtime settings to "attached node"

Runtime settings

Elixir standalone [Attached node]

Connect the session to an already running node and evaluate code in the context of that node. Thanks to this
approach you can work with an arbitrary Elixir runtime. Make sure to give the node a name and a cookie, for
example:

iex --sname test --cookie mycookie

Then enter the connection information below:

Name

my-app@45a0:b366:8af7:9dd1:3241:3e00:0e0d:53%9b

Cookie

mz5z5R2h1U6pDhMwkjdazrowCf64FXpwHmMSXSC1ov2Z0ZfhEI+V6gChSRnrSnBX4

TESTING IN LIVEBOOK

e Doctests are executed automatically
e You can write regular ExUnit test cases

DBG() IN LIVEBOOK

e dbg () was recently added (elixir v1.14)
e Manipulate your pipeline live

OTHER RESOURCES

e The DockYard Academy: open source curriculum to
help students learn Elixir

e Project Bumblebee: Neural Networks in Livebook
(GPT2, Stable Diffusion, ... on your computer!)

https://github.com/DockYard-Academy/curriculum
https://hexdocs.pm/bumblebee

i

NO NUMBATS HERE!

