
Overview of Secure Boot state in the
ARM-based SoCs 2nd Edition

Open Source Firmware, BMC and Bootloader devroom

FOSDEM 2023

Tomasz Żyjewski

1 / 25

whoami

Who we are?
What do we mean by Secure Boot
Typical implementation and workflow
Research results from 2021
Mediatek and Rockchip cases
Summary
Contact us
Q&A

Agenda

2 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

over 3 years in 3mdeb
integration of update systems and
OS creation for embedded devices
system security

 @tomzy_0
 tomasz.zyjewski@3mdeb.com

Tomasz Żyjewski
Embedded Systems Team Leader

whoami

3 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

https://twitter.com/tomzy_0
mailto:tomasz.zyjewski@3mdeb.com

coreboot licensed service providers since 2016 and leadership participants
UEFI Adopters since 2018
Yocto Participants and Embedded Linux experts since 2019
Official consultants for Linux Foundation fwupd/LVFS project
IBM OpenPOWER Foundation members

Who we are?

4 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

We focus on the ARM context in this presentation
Boot ROM feature
Verified Boot
To verify the firmware before executing it

verify the signature
private key was used to sign the binary
public key must be known by the device

Boot ROM is assumed to be trusted
closed source

The meaning of Secure Boot for different architecture can be different

What do we mean by Secure Boot

5 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

Public key written into the SoC
electrical Fuse (eFuse)
OTP (One-Time-Programmable) registers
Root of Trust

Next components can use different keys
must be locked down (e.g. disabled U-Boot shell)
to preserve the chain of trust

We are focusing on the first step
the verification of the first binary executed by the BootROM

verify
signature

Boot ROM bootloader kernel

pubkey 1 pubkey 2

verify
signature

Typical implementation

6 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

Generate keypair
Sign the firmware binary
Fuse the public key into the SoC
Enable Secure Boot feature
Confirm whether the firmware verification works correcly
Close (lock) the platform

at this point only the signed firmware can be executed

binary

private key

signed binary

signed binary

public key

verification result

Sign Verify

Secure location Target device

Typical workflow

7 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

Signed binary layout
Typically original data extended with some header

specific to the given implementation
digital signature is here

binary

header

signed
binary

digital signature

...

...

Typical workflow

8 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

Research results from 2021

9 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

HABv4 (High Assurance Boot)
Boot ROM feature
NXP specific, used on i.MX50, i.MX53, i.MX6, i.MX7 and i.MX8M
app note: https://www.nxp.com/docs/en/application-
note/AN4581.pdf

AHAB (Advanced High Assurance Boot)
also Boot ROM feature
used on i.MX8 and i.MX8X
app note: https://www.nxp.com/docs/en/application-
note/AN12312.pdf

QorIQ Trust Architecture
provides Secure Boot for Layerscape products as one of the
features, similar to HAB
app note: https://bit.ly/39Ez3Mm

Signing tool
for i.MX: still available after free registration
for Layerscape: still as part of LSDK

NXP - i.MX 6/7/8, Layerscape

10 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

https://www.nxp.com/docs/en/application-note/AN4581.pdf
https://www.nxp.com/docs/en/application-note/AN12312.pdf
https://bit.ly/39Ez3Mm

Documentation still under NDA
38x/39x Families have informations about NDA needed
other Families got only info about Secure Boot in other features

Newer U-Boot releases lacks of previously available documentation
https://github.com/MarvellEmbeddedProcessors/u-boot-
marvell/blob/u-boot-2018.03-armada-
18.12/doc/mvebu/trusted_boot.txt
looks like this is last document out there about Secure Boot

Described there process could be used with 38x, 39x and as well with
7k/8k Families

still this is only theoretical knowledge
no practical examples

Marvell Armada

11 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

https://github.com/MarvellEmbeddedProcessors/u-boot-marvell/blob/u-boot-2018.03-armada-18.12/doc/mvebu/trusted_boot.txt

Latest Jetson Manual
https://bit.ly/3DCc2cD, Jetson Orin
not much fuses or Secure Boot oriented info there

Documentation uncertain
https://bit.ly/3Y3mORb; says it can be done, mention flashing tools
which is flash.sh script
https://bit.ly/3lbXutR; says Secure Boot is still not available

Fusing tool is still odmfuse.sh script
once again documentation seems outdated
looks like not every board can be fused
bad story: https://bit.ly/3YrNNWi

NVIDIA - Tegra

12 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

https://bit.ly/3DCc2cD
https://bit.ly/3Y3mORb
https://bit.ly/3lbXutR
https://bit.ly/3YrNNWi

Still looks like it is missing official documentation
Most interesting case https://bit.ly/40pOYYj

done on Nanopi Neo, Allwinner H3
provides list of useful links
also whole verification process, if any step failes platform goes to
FEL
sunxi-tools: https://github.com/linux-sunxi/sunxi-tools
tools generate keys, burn fuses, create signed SPL

Got one major vulnerability
always can go to FEL, read from there fuses
interesting way to fight that, burn USB data lines

Allwinner

13 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

https://bit.ly/40pOYYj
https://github.com/linux-sunxi/sunxi-tools

Documentation provided on gitlab pages
https://mediatek.gitlab.io/aiot/doc/aiot-dev-guide/sw/yocto/secure-
boot.html#, based on Yocto Project, but can be used

The Root of Trust (RoT) is Mediatek BootROM which verifies TF-A(BL2)
CoT

TF-A verifies BL3x image which consists of TF-A(BL31), OP-
TEE(BL32) and U-Boot(BL33) using TF-A Trusted Board Boot
U-Boot(BL33) later verifies Kernel image with U-Boot Verified Boot

Mediatek Boot ROM has its vulnerabilities
https://bit.ly/3YjXUg6

Mediatek - verification steps

14 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

https://mediatek.gitlab.io/aiot/doc/aiot-dev-guide/sw/yocto/secure-boot.html#
https://bit.ly/3YjXUg6

Those are the steps that are executed after we power up the device
BL1 loads a hash based on Root of Trust public key (ROTPK) from
the eFuse and calculates SHA256 of that ROTPK in BL2 image
comparision decides if the system will halt or go into signature
verification
next BL1 decrypts the loader signature and loads then calculates
the SHA256 of it
once again, comparision decides if the system will halt or go into
next step which is loading BL3x image

Mediatek - Secure Boot

15 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

It is not clear on which SoCs Secure Boot can be enabled
documentation mention only MT8365 and MT8395
the efuse index used later may be different - unfortunately they are
provided with NDA

Create efuse.pem and da.pem private keys to build signed BL2 and
Download Agent (DA)

DA used only in image flashing process
signing tools under NDA

Later use eFuse Writer tool (also provided with NDA only) to execute
enabling procedure

read state of Secure Boot Check(SBC) and Download Agent
Authentication(DAA) efuse bits - should be set to zero
verify that Public Key Hash0 efuse field is empty
set SBC and DAA to one (one time only)
write public part of efuse.pem key (calculated manually or taken
from building BL2 logs)

Mediatek - enabling Secure Boot

16 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

BootROM uses public key from eFUSEs or OTP to establish RoT
eFUSE are on RK3399 and RK3288, OTP on RK3308, RK3326, PX30
and RK3328
work similar but OTP is updated by miniloader and eFUSE by PC
tool

If verification of loaded binary was successful, the RoT extends into CoT
Secondary Program Loader(SPL) verifies U-Boot which verifies
Kernel, both using the same FIT Verified Boot mechanism

To get CoT established we need
generate private and public keypair
burn public key into eFUSE’s
sign idbloader.img (U-Boot TPL+SPL merged into one file)
configure Verified Boot in SPL and U-Boot
flash signed firmware

Documentation
http://bitly.pl/jdEDG
hard to find, seems kind of outdated (2019)

Rockchip - verification steps

17 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

http://bitly.pl/jdEDG

Host

Host

Target

Target

Generate RSA keypair

Sign RockChip loader binary with generated key

Send signed binary using eFUSE Tool

Extract public key, store key hash in eFUSE and enable Secure Mode

Send status

Prepare firmware image with a signed TPL+SPL

Send previously signed RockChip loader binary, but using rkdeveloptool

Verify binary against key stored in eFUSE

Execute DDR init binary, unlock MaskROM to allow firmware flashing

Send status

Send firmware

Flash received firmware

Send status

Issue reboot command

If the key got fused properly and firmware is properly signed,
device should boot flashed firmware.

Rockchip - enabling Secure Boot

18 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

Code can be signed by rk_sign_tool (Linux) or Secure Boot Tool (Windows)
Linux tools can be found here: https://github.com/rockchip-
linux/rkbin/tree/master/tools
there was also repository tools with Secure Boot Tool but looks
like it is no longer available

Using rk_sign_tool we can generate signing keys
keys can be used with Linux or Windows tool

rkbin repository also provides set of *.ini files
different SoC can have different *.ini file, e.g. RK3288MINIALL.ini
for RK3288
boot_merger script later can be use to create loader from *.ini file

Created loader can be signed with rk_sign_tool or Secure Boot Tool

Rockchip - signing code

19 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

https://github.com/rockchip-linux/rkbin/tree/master/tools

eFUSE Tool should be used for that
also a Windows tool that was available in tools repository
accepts only binaries signed with Secure Boot Tool

When burning eFUSE, they need to be powered up
in case of RK3399 there is a pin called VCC18V_EFUSE
some boards have special circuit designed for that
if not, we need to find correct pin/test point and hope for the best

Found thanks to another not-so-easy to found documentation
http://bitly.pl/HlIK5

Rockchip - burning eFUSE

20 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

http://bitly.pl/HlIK5

Create loader with boot_merger
Create keys with rk_sign_tool
Sign loader with Secure Boot Tool

now need to search how we can download that tool
Burn fuses with eFUSE Tool

now need to search how we can download that tool
Load signed loader with rkdeveloptool

another Rockchip tool from rkbin repository
initialize DDR, unlock MaskROM, allow firmware flashing

Interesting blog
https://blog.3mdeb.com/2021/2021-12-03-rockchip-secure-boot/

Rockchip - enabling Secure Boot, summarize

21 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

https://blog.3mdeb.com/2021/2021-12-03-rockchip-secure-boot/

Overview results

22 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

Our state of knowledge expanded over the last two years
Still, the general prinicipals of Secure Boot is common for vendors

image authentication before execution
private key used to sing a firmware
public key used to verify, fused in SoC
BootROM still threaten as RoT

All cases uses SHA-256 as a hash function for digital signature
more vendors using different keys

Documentation lacks quality
messing with fuses may brick your hardware
in some cases we have tools but with manuals under NDA

Summary

23 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

We are open to cooperate and discuss

 contact@3mdeb.com

 facebook.com/3mdeb

 @3mdeb_com

 linkedin.com/company/3mdeb

https://3mdeb.com

Feel free to contact us if you believe we can help you in any way. We are always
open to cooperate and discuss.

Contact us

24 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

mailto:contact@3mdeb.com
https://www.facebook.com/3mdeb
https://twitter.com/3mdeb_com
https://www.linkedin.com/company/3mdeb
https://3mdeb.com/

Q&A

25 / 25
Open Source Firmware, BMC and Bootloader devroom, FOSDEM 2023

CC BY | Tomasz Żyjewski

