
Simon Kuenzer
Lead Maintainer
CTO and Co-Founder
Unikraft GmbH
simon@unikraft.io

Building a Linux-compatible Unikernel

FOSDEM‘23
February 5, 2023

How your Application runs on Unikraft

mailto:simon@unikraft.io


Unikraft: The Unikernel SDK

1



FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel 3© 2023 Unikraft GmbH

Unikraft Unikernels

■ One application à Flat and single address space
■ Single monolithic binary with only necessary kernel components
■ Advantages from specialization

– Performance and efficiency
– Small TCB and memory footprint



4FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Design Principles
■ Specialization as main driving design principle

– Highly customizable & configurable: KPI-driven specialization
■ Philosophy: “Everything is a (micro-)library”

– Decomposed OS primitives
■ Schedulers, memory allocators, VFS, network stacks, …

– Architectures, platform support, and drivers
■ Virtualization environments, bare-metal

– Application interfaces
■ POSIX, Linux system call ABI, language runtimes

(1) Configuration (KConfig) 
and Build System (2) Library Pool



5FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

The (Micro)-Library Stack

LI
BC

LA
YE

R

application

PO
SI

X
CO

M
PA

T 
LA

YE
R

O
S 

PR
IM

IT
IV

ES
LA

YE
R

PL
AT

FO
RM

LA
YE

R

musl newlib

syscall-shim

posix-fdtab posix-process pthread…
posix-socket vfscore

lw
ip

NW
 S

TA
CK

S

m
tc

p

uknetdev
9p

fs
FI

LE
SY

ST
EM

S

ra
m

fs
ukblockdev

ex
t4

uksched

uk
pr

ee
m

pt

SC
HE

DU
LE

RS

uk
co

op

ukboot

dy
na
m
icb

oo
t

BO
OT

ER
S

uk
co

op

ukalloc

bu
dd

ya
llo
c

M
EM

 A
LL

OC
AT

OR
S

tin
yu
al
lo
c

tls
f

m
im

al
lo
c

os
ca
sr

KV
M virtio-net

clock
virtio-block

memregion
XE

N

netfront
clock

blockfront
memregion

…



Linux Application Compatibility

2



7FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Linux Application Compatibility for Adoption

■ Most cloud software is developed for Linux
■ People are used to their software
■ Remove obstacles for using Unikraft with existing application

Seamless application support

Applications are automatically ported and benefit from
lower boot times, less memory consumption, improved performance, etc.

VISION



8FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Linux-compatibility Landscape

■ Application* sources are compiled and 
linked together with Unikraft

Native Binary compatible

■ Application* binaries are externally 
built

Unikraft-driven
compilation Instrumented Build-time 

linking
Runtime

linking/loading

■ Port/convert 
application 
build procedure 
to Unikraft

■ Instrument 
foreign build 
system
(e.g., cross-
compilation)

■ Build objects or 
static libraries 
externally and 
link with 
Unikraft

■ Support for 
shared libraries 
and loading on 
ELF binaries



9FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Requirements

API-compatibility

Native Binary compatible

ABI-compatibility

■ POSIX, POSIX, POSIX
■ API-compatible libraries and ported 

libraries
(including libC)

■ ELF format (shared libraries/binaries)
■ Binary compatible function interfaces

– Linux system calls
– Library functions

■ Binary compatible data representation

■ Compatible system runtime environment
– E.g., special filesystems and mount points: procfs, sysfs



10FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Pros & Cons
Native

(API-compatible) Binary compatible
(ABI-compatible)

+ Source code not required
+ Applications are compiled the standard 

way, independent from Unikraft
+ No modifications to application needed

- Risk of taking over implementation 
complexity of Linux to Unikraft
(e.g., “netlink sockets” for getifaddrs())

- Less opportunities to specialize and 
tune kernel-application interaction

+ Performance tuning and specialization 
of application-kernel interaction 
naturally possible

- Source code of application needed
- Compiling of the application is not 

independent to Unikraft
(instrumentation, build system porting)



11FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Binary compatibility vs. Native

kReq/s

■ No extra optimization on native port
■ Still Apple&Oranges comparison: musl vs glibc, different heap allocators

0 20 40 60 80 100 120 140

linux+nginx

elfloader+nginx

nginx-native

nginx

Nginx default index.htm, served from initrd(RAM), Unikraft: tlsf
Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz, Guest-Host, 1vCPU



12FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Optimization Potential of Native Ports

0 10 20 30 40 50 60 70 80

Binary compatibility

Optimized native

Go HTTP Application

kReq/s

+57%

■ Native port patched with improved HTTP processing

Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz, Guest-Host, 1vCPU



Unikraft’s Implementation

3



14FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Overview

Native
(API-compatible)

Binary compatible
(ABI-compatible)

syscall_shim

posix-process posix-user vfscore posix-mmap

musl elfloader

Ap
pl

ic
at

io
n

Sy
sc

al
l

m
ap

pi
ng

C
om

pa
t

la
ye

r



15FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Syscall Shim

■ Libraries register a handler to the shim
■ Shim provides two ways to handle/route system calls

– Compile-time: Link application to handler functions (function calls)
– Runtime: Binary system call handler (Linux-style)

■ Our aim: Re-use code for both modes

syscall_shim

vfscore posix-process posix-user

System call request (e.g., SYS_writev())

Call handler function



16FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Overview

Native
(API-compatible)

Binary compatible
(ABI-compatible)

syscall_shim

posix-process posix-user vfscore posix-mmap

musl elfloader

Ap
pl

ic
at

io
n

Sy
sc

al
l

m
ap

pi
ng

C
om

pa
t

la
ye

r



17FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Native: lib-musl

■ Musl is compiled natively (build by Unikraft)
■ Few patches to replace system call invocation

– Syscall_shim resolves invocation to functions calls
– Syscall_shim provides ENOSYS stub for unregistered system calls

■ At run-time, syscall shim is out of the way

lib-musl vfscoreuk_syscall_r_write()write()

posix-process

getpid()

uk_syscall_r_getpid()
“Rewrite syscalls to function calls”

syscall_shim

Native
application



18FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Overview

Native
(API-compatible)

Binary compatible
(ABI-compatible)

syscall_shim

posix-process posix-user vfscore posix-mmap

musl elfloader

Ap
pl

ic
at

io
n

Sy
sc

al
l

m
ap

pi
ng

C
om

pa
t

la
ye

r



19FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Bin. Compat. (1/2): app-elfloader
■ Loads an Linux ELF application
■ Supports (today):

– static-PIE
– dynamically-linked using loader

(needs posix-mmap)
■ System calls are trapped and handled through

syscall_shim
■ Supported system calls selectable by chosing 

subsystem libraries
– e.g., vfscore, posix-process, posix-user

app-
elfloader

Unikraft

ELF application

syscall_shim

elf_load() SYSCALL



20FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Bin. Compat. (2/2): System Call handler
■ syscall trap handler provided by syscall_shim
■ No domain switch needed, single AS

■ Because of Linux system call calling convention and 
assumptions:
– Linux does not use extended registers à we do
■ Save & restore FPU, VU, … state

– Linux does not use a TLS à we do
■ Save & restore TLS register (application TCB)

Syscall trap handler

Save extended registers

Save TLS register

Call system call handler
(through syscall_shim)

Restore TLS pointer

Restore extended register

Return

Load “Unikraft” TLS reg



Demo time

4



Learned Lessons
Native Application Support

5



23FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Background
■ We avoid linking in multiple libCs to monolithic Unikernel

(specialization at compile time)
– Use a single libC

■ Provide multiple libCs:
nolibc, musl, newlib

■ Keep libC as vanilla as possible
à lower maintenace effort



24FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Learned Lessons with libCs
■ Every libC is different

à Test code with all officially supported libCs
■ Namespacing is important

à Risk of clashing with libC(-internal) definitions
à avoid plain declarations, like MIN(), MAX()
à underscore prefixes may not be enough

■ Careful with initialization and dependencies
– Example: TLS and kernel prints

à Kernel prints got their own print function
■ Circular dependencies can occur

– Example: getdents64()
– Learned: Vanilla not always possible à patching



25FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Example: Circular Dependency getdents64()

■ Circular dependency (syscall_shim à musl à syscall_shim)
■ musl defines getdents64() as macro to getdents()

■ vfscore implements both syscalls with:

#define getdents64 getdents

<dirent.h>:

#include <dirent.h> /* struct dirent, struct dirent64 */

UK_SYSCALL_R_DEFINE(int, getdents, int, fd, struct dirent*,
dirp, size_t, count)

{/* ... */}

UK_SYSCALL_R_DEFINE(int, getdents64, int, fd, struct dirent64 *,
dirp, size_t, count)

{/* ... */}

⚡



Learned Lessons:
Binary Application Support

6



27FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Background
■ Unikraft makes use of TLS

– An artifact of supporting applications natively
– Same register used as in Linux user space (x86: %fsbase segment register)

à Keep bin. compat working for build-time linking
■ Unikraft makes use of extended registers (even drivers)

– Normally no separation between kernel and application code
à Monolithic: Everything is a function call



28FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Learned Lessons with binary compatibility
■ Linux system calling convention fits for Linux assumptions
■ à Need to be able to handle two TLSes (Unikraft TLS and “userland” TLS)

– Our solution: switch TLS on binary system calls
■ à Need to handle extended register context

– Our solution: Save & restore on binary system calls



Closing

7



30FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Upcoming Features
■ Improved Linux compatibility

– posix-signals, posix-netlink, thread exit, join, wait support
■ Seamless application support with kraftkit (using elfloader)

Watch out for:
■ Seamless integration into kubernetes
■ Running Unikraft on your infrastructure provider
■ Automatically packaging of your applications

I’d ❤ to hear your feedback: simon@unikraft.io

mailto:simon@unikraft.io


31FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Join us!
■ OSS project

unikraft.org
■ Get started with kraftkit

github.com/unikraft/kraftkit
■ Code & Contributing

github.com/unikraft
■ Follow us on

– Discord: https://bit.ly/UnikraftDiscord
– Twitter: @UnikraftSDK
– LinkedIn: https://linkedin.com/company/unikraft-sdk

https://unikraft.org/
https://github.com/unikraft/kraftkit
https://github.com/unikraft
https://bit.ly/UnikraftDiscord
https://twitter.com/unikraftsdk
https://linkedin.com/company/unikraft-sdk


Simon Kuenzer
CTO & Co-Founder
simon@unikraft.io

Unikraft GmbH
Im Neuenheimer Feld 582
69120 Heidelberg
https://unikraft.io

mailto:simon@unikraft.io
https://unikraft.io/

