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Unikraft Unikernels

■ One application à Flat and single address space
■ Single monolithic binary with only necessary kernel components
■ Advantages from specialization

– Performance and efficiency
– Small TCB and memory footprint
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Design Principles
■ Specialization as main driving design principle

– Highly customizable & configurable: KPI-driven specialization
■ Philosophy: “Everything is a (micro-)library”

– Decomposed OS primitives
■ Schedulers, memory allocators, VFS, network stacks, …

– Architectures, platform support, and drivers
■ Virtualization environments, bare-metal

– Application interfaces
■ POSIX, Linux system call ABI, language runtimes

(1) Configuration (KConfig) 
and Build System (2) Library Pool
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The (Micro)-Library Stack
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Linux Application Compatibility for Adoption

■ Most cloud software is developed for Linux
■ People are used to their software
■ Remove obstacles for using Unikraft with existing application

Seamless application support

Applications are automatically ported and benefit from
lower boot times, less memory consumption, improved performance, etc.

VISION
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Linux-compatibility Landscape

■ Application* sources are compiled and 
linked together with Unikraft

Native Binary compatible

■ Application* binaries are externally 
built

Unikraft-driven
compilation Instrumented Build-time 

linking
Runtime

linking/loading

■ Port/convert 
application 
build procedure 
to Unikraft

■ Instrument 
foreign build 
system
(e.g., cross-
compilation)

■ Build objects or 
static libraries 
externally and 
link with 
Unikraft

■ Support for 
shared libraries 
and loading on 
ELF binaries
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Requirements

API-compatibility

Native Binary compatible

ABI-compatibility

■ POSIX, POSIX, POSIX
■ API-compatible libraries and ported 

libraries
(including libC)

■ ELF format (shared libraries/binaries)
■ Binary compatible function interfaces

– Linux system calls
– Library functions

■ Binary compatible data representation

■ Compatible system runtime environment
– E.g., special filesystems and mount points: procfs, sysfs
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Pros & Cons
Native

(API-compatible) Binary compatible
(ABI-compatible)

+ Source code not required
+ Applications are compiled the standard 

way, independent from Unikraft
+ No modifications to application needed

- Risk of taking over implementation 
complexity of Linux to Unikraft
(e.g., “netlink sockets” for getifaddrs())

- Less opportunities to specialize and 
tune kernel-application interaction

+ Performance tuning and specialization 
of application-kernel interaction 
naturally possible

- Source code of application needed
- Compiling of the application is not 

independent to Unikraft
(instrumentation, build system porting)
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Binary compatibility vs. Native

kReq/s

■ No extra optimization on native port
■ Still Apple&Oranges comparison: musl vs glibc, different heap allocators

0 20 40 60 80 100 120 140

linux+nginx

elfloader+nginx

nginx-native

nginx

Nginx default index.htm, served from initrd(RAM), Unikraft: tlsf
Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz, Guest-Host, 1vCPU
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Optimization Potential of Native Ports

0 10 20 30 40 50 60 70 80

Binary compatibility

Optimized native

Go HTTP Application

kReq/s

+57%

■ Native port patched with improved HTTP processing

Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz, Guest-Host, 1vCPU



Unikraft’s Implementation
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Overview

Native
(API-compatible)

Binary compatible
(ABI-compatible)

syscall_shim
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Syscall Shim

■ Libraries register a handler to the shim
■ Shim provides two ways to handle/route system calls

– Compile-time: Link application to handler functions (function calls)
– Runtime: Binary system call handler (Linux-style)

■ Our aim: Re-use code for both modes

syscall_shim

vfscore posix-process posix-user

System call request (e.g., SYS_writev())

Call handler function
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Overview

Native
(API-compatible)

Binary compatible
(ABI-compatible)

syscall_shim

posix-process posix-user vfscore posix-mmap
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Native: lib-musl

■ Musl is compiled natively (build by Unikraft)
■ Few patches to replace system call invocation

– Syscall_shim resolves invocation to functions calls
– Syscall_shim provides ENOSYS stub for unregistered system calls

■ At run-time, syscall shim is out of the way

lib-musl vfscoreuk_syscall_r_write()write()

posix-process

getpid()

uk_syscall_r_getpid()
“Rewrite syscalls to function calls”

syscall_shim

Native
application
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Overview

Native
(API-compatible)

Binary compatible
(ABI-compatible)

syscall_shim
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Bin. Compat. (1/2): app-elfloader
■ Loads an Linux ELF application
■ Supports (today):

– static-PIE
– dynamically-linked using loader

(needs posix-mmap)
■ System calls are trapped and handled through

syscall_shim
■ Supported system calls selectable by chosing 

subsystem libraries
– e.g., vfscore, posix-process, posix-user

app-
elfloader

Unikraft

ELF application

syscall_shim

elf_load() SYSCALL



20FOSDEM‘23 February 5, 2023 Building a Linux-compatible Unikernel © 2023 Unikraft GmbH

Bin. Compat. (2/2): System Call handler
■ syscall trap handler provided by syscall_shim
■ No domain switch needed, single AS

■ Because of Linux system call calling convention and 
assumptions:
– Linux does not use extended registers à we do
■ Save & restore FPU, VU, … state

– Linux does not use a TLS à we do
■ Save & restore TLS register (application TCB)

Syscall trap handler

Save extended registers

Save TLS register

Call system call handler
(through syscall_shim)

Restore TLS pointer

Restore extended register

Return

Load “Unikraft” TLS reg



Demo time
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Learned Lessons
Native Application Support
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Background
■ We avoid linking in multiple libCs to monolithic Unikernel

(specialization at compile time)
– Use a single libC

■ Provide multiple libCs:
nolibc, musl, newlib

■ Keep libC as vanilla as possible
à lower maintenace effort
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Learned Lessons with libCs
■ Every libC is different

à Test code with all officially supported libCs
■ Namespacing is important

à Risk of clashing with libC(-internal) definitions
à avoid plain declarations, like MIN(), MAX()
à underscore prefixes may not be enough

■ Careful with initialization and dependencies
– Example: TLS and kernel prints

à Kernel prints got their own print function
■ Circular dependencies can occur

– Example: getdents64()
– Learned: Vanilla not always possible à patching
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Example: Circular Dependency getdents64()

■ Circular dependency (syscall_shim à musl à syscall_shim)
■ musl defines getdents64() as macro to getdents()

■ vfscore implements both syscalls with:

#define getdents64 getdents

<dirent.h>:

#include <dirent.h> /* struct dirent, struct dirent64 */

UK_SYSCALL_R_DEFINE(int, getdents, int, fd, struct dirent*,
dirp, size_t, count)

{/* ... */}

UK_SYSCALL_R_DEFINE(int, getdents64, int, fd, struct dirent64 *,
dirp, size_t, count)

{/* ... */}

⚡



Learned Lessons:
Binary Application Support
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Background
■ Unikraft makes use of TLS

– An artifact of supporting applications natively
– Same register used as in Linux user space (x86: %fsbase segment register)

à Keep bin. compat working for build-time linking
■ Unikraft makes use of extended registers (even drivers)

– Normally no separation between kernel and application code
à Monolithic: Everything is a function call
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Learned Lessons with binary compatibility
■ Linux system calling convention fits for Linux assumptions
■ à Need to be able to handle two TLSes (Unikraft TLS and “userland” TLS)

– Our solution: switch TLS on binary system calls
■ à Need to handle extended register context

– Our solution: Save & restore on binary system calls



Closing
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Upcoming Features
■ Improved Linux compatibility

– posix-signals, posix-netlink, thread exit, join, wait support
■ Seamless application support with kraftkit (using elfloader)

Watch out for:
■ Seamless integration into kubernetes
■ Running Unikraft on your infrastructure provider
■ Automatically packaging of your applications

I’d ❤ to hear your feedback: simon@unikraft.io

mailto:simon@unikraft.io
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Join us!
■ OSS project

unikraft.org
■ Get started with kraftkit

github.com/unikraft/kraftkit
■ Code & Contributing

github.com/unikraft
■ Follow us on

– Discord: https://bit.ly/UnikraftDiscord
– Twitter: @UnikraftSDK
– LinkedIn: https://linkedin.com/company/unikraft-sdk

https://unikraft.org/
https://github.com/unikraft/kraftkit
https://github.com/unikraft
https://bit.ly/UnikraftDiscord
https://twitter.com/unikraftsdk
https://linkedin.com/company/unikraft-sdk
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