
WRITING LESS

INSECURE

JAVASCRIPT
FOSDEM

6th February 2022

and

Video

rg/2022/schedule/event/writing_less_insecure_javascript

Subtitles (./talk.srt)

https://fosdem.org/2022/schedule/event/writing_less_insecure_javascript/
http://localhost:8000/talk.srt

André Jaenisch

Matrix: @Ryuno-Ki:matrix.org

Twitter:

Others:

console.log((function whoAmI(){}).name)

@AndreJaenisch

(https://twitter.com/AndreJaenisch)

jaenis.ch/about (https://jaenis.ch/about/)

https://twitter.com/AndreJaenisch
https://jaenis.ch/about/

WHAT WILL YOU LEARN TODAY?

1.

2.

3.

4.

What can you do as developer?

What can you do as team?

What can you do as company?

What can you do as community?

MOTIVATION

MOTIVATION

“Focus on the people because everything else is an

implementation detail”

MOTIVATION

“Focus on the people because everything else is an

implementation detail”

Source: similar from Ship It!

(https://changelog.com/shipit)

https://changelog.com/shipit

Don't try these code snippets on other people's

machines. You might risk legal liability.

Don't try these code snippets on other people's

machines. You might risk legal liability.

There is no 100 % security. That means not, that efforts

are futile, though.

CHOOSE YOUR AVATAR

Alice Bob

CHOOSE YOUR AVATAR

Alice Bob

WHAT CAN YOU DO AS

DEVELOPER?

It's dangerous to go alone! Take this.

If you want to see code, hit ⬇️

If you want to skip to tooling, use ➡️

ASSUMPTIONS

The presentations assumes JavaScript. You might get

different results with TypeScript. However, even that is

not a silver bullet.

You are expected to be at least somewhat familiar with

the language. Terms like prototype chain are not

unknown to you.

OWASP (OPEN WEB APPLICATION

SECURITY PROJECT) TOP TEN

Read in full (https://owasp.org/Top10/)

https://owasp.org/Top10/

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery

ATTACK VECTORS

1.

2.

3.

4.

5.

6.

7.

8.

Naming variables

Cross-site scripting (XSS)

Malicious package (Typo-squatting)

Prototype pollution

Reverse tabnapping

Directory traversal

Exploiting postMessage
ReDOS attacks

NAMING VARIABLES

Use dangerously, raw or unsafe for not validated

or sanitized data. Being longer to write and defaulting

to a secure state is a plus.

Back to attack vectors

CROSS-SITE SCRIPTING (XSS)

Quoting Snyk

A cross-site scripting attack occurs

when the attacker tricks a legitimate

web-based application or site to

accept a request as originating from a

trusted source.

This is done by escaping the context of the web

application; the web application then delivers that data

to its users along with other trusted dynamic content,

without validating it. The browser unknowingly

executes malicious script on the client side in order to

perform actions that are otherwise typically blocked by

the browser’s Same Origin Policy.

Counter measures:

MALICIOUS PACKAGE (TYPO-SQUATTING)

Problem: Using typos for registering package with

malicious code.

Counter measures:

PROTOTYPE POLLUTION

Prototype Pollution is a vulnerability

affecting JavaScript. Prototype

Pollution refers to the ability to inject

properties into existing JavaScript

language construct prototypes, such

as objects. JavaScript allows all Object

attributes to be altered, including their

magical attributes such as _proto_,
constructor and prototype.

An attacker manipulates these

attributes to overwrite, or pollute, a

JavaScript application object

prototype of the base object by

injecting other values. Properties on

the Object.prototype are then

inherited by all the JavaScript objects

through the prototype chain.

When that happens, this leads to either

denial of service by triggering

JavaScript exceptions, or it tampers

with the application source code to

force the code path that the attacker

injects, thereby leading to remote code

execution.

Example code

function isObject(obj) {

 return ['function', 'object'].includes(typeof obj);

}

function merge(target, source) {

 for (let key in source) {

 if (isObject(target[key]) && isObject(source[key])) {

 merge(target[key], source[key]);

 } else {

 target[key] = source[key];

 }

 }

 return target;

}

function clone(target) { return merge({}, target); }

Example code

Inspired by Carlos Prolop'

var o = {};
console.log(o.isAdmin);
// => undefined

1
2
3

clone({'constructor': {'prototype': {isAdmin: true}}})4
console.log(o.isAdmin);5
// => true6

NodeJS - __proto__ &

prototype Pollution

(https://github.com/carlospolop/hacktricks/blob/maste

https://github.com/carlospolop/hacktricks/blob/master/pentesting-web/deserialization/nodejs-proto-prototype-pollution/README.md

Example code

Inspired by Carlos Prolop'

var o = {};
console.log(o.isAdmin);
// => undefined

1
2
3

clone({'constructor': {'prototype': {isAdmin: true}}})4
console.log(o.isAdmin);5
// => true6

clone({'constructor': {'prototype': {isAdmin: true}}})

var o = {};1
console.log(o.isAdmin);2
// => undefined3

4
console.log(o.isAdmin);5
// => true6

NodeJS - __proto__ &

prototype Pollution

(https://github.com/carlospolop/hacktricks/blob/maste

https://github.com/carlospolop/hacktricks/blob/master/pentesting-web/deserialization/nodejs-proto-prototype-pollution/README.md

Example code

Inspired by Carlos Prolop'

var o = {};
console.log(o.isAdmin);
// => undefined

1
2
3

clone({'constructor': {'prototype': {isAdmin: true}}})4
console.log(o.isAdmin);5
// => true6

clone({'constructor': {'prototype': {isAdmin: true}}})

var o = {};1
console.log(o.isAdmin);2
// => undefined3

4
console.log(o.isAdmin);5
// => true6

clone({'constructor': {'prototype': {isAdmin: true}}})
console.log(o.isAdmin);
// => true

var o = {};1
console.log(o.isAdmin);2
// => undefined3

4
5
6

NodeJS - __proto__ &

prototype Pollution

(https://github.com/carlospolop/hacktricks/blob/maste

https://github.com/carlospolop/hacktricks/blob/master/pentesting-web/deserialization/nodejs-proto-prototype-pollution/README.md

Counter measures:

REVERSE TABNAPPING

Problem: Links with target="_blank" used to

expose window.opener.

This allowed the target site to manipulate the source

web page.

Counter measure

Use rel="noopener noreferrer" on links

opening in a new tab.

Read About rel=noopener

(https://mathiasbynens.github.io/rel-noopener/)

Back to attack vectors

https://mathiasbynens.github.io/rel-noopener/

DIRECTORY TRAVERSAL

Problem: Exploit HTTP to gain unauthorized access to

restricted files or directories.

Main characteristic is „dot-dot-slash” (or ../).

Example call

curl --path-as-is https://jaenis.ch/hobbies/../../

yields a bad request, so don't try it

Counter measure

Don't rely on user input when accessing the file

system if possible.

Normalize path information (i.e. URL-encoding)

before using it. Check prefix matches directory for

which user has access rights.

Avoid requests to file system via URL.

Don't store sensitive files on web server storage.

Read

.

curl ootw: –path-as-is

(https://daniel.haxx.se/blog/2020/07/29/curl-ootw-

path-as-is/)

https://daniel.haxx.se/blog/2020/07/29/curl-ootw-path-as-is/

EXPLOITING postMessage

Problem: Lack of validation of origin for incoming

messages allows arbitrary code execution.

Example code

window.postMessage({name: 'sync-ready'}, '*');
window.addEventListener('message', function (ev) {
 if (ev.data === 'page-ready'){
 // ...
 } else {
 chrome.runtime.sendMessage(ev.data, function(response){
 });
 }
}, false);

1
2
3
4
5
6
7
8
9

Example code

window.postMessage({name: 'sync-ready'}, '*');
window.addEventListener('message', function (ev) {
 if (ev.data === 'page-ready'){
 // ...
 } else {
 chrome.runtime.sendMessage(ev.data, function(response){
 });
 }
}, false);

1
2
3
4
5
6
7
8
9

window.postMessage({name: 'sync-ready'}, '*');1
window.addEventListener('message', function (ev) {2
 if (ev.data === 'page-ready'){3
 // ...4
 } else {5
 chrome.runtime.sendMessage(ev.data, function(response){6
 });7
 }8
}, false);9

Example code

window.postMessage({name: 'sync-ready'}, '*');
window.addEventListener('message', function (ev) {
 if (ev.data === 'page-ready'){
 // ...
 } else {
 chrome.runtime.sendMessage(ev.data, function(response){
 });
 }
}, false);

1
2
3
4
5
6
7
8
9

window.postMessage({name: 'sync-ready'}, '*');1
window.addEventListener('message', function (ev) {2
 if (ev.data === 'page-ready'){3
 // ...4
 } else {5
 chrome.runtime.sendMessage(ev.data, function(response){6
 });7
 }8
}, false);9

 chrome.runtime.sendMessage(ev.data, function(response){

window.postMessage({name: 'sync-ready'}, '*');1
window.addEventListener('message', function (ev) {2
 if (ev.data === 'page-ready'){3
 // ...4
 } else {5

6
 });7
 }8
}, false);9

// Content scripts are only executed on top-level windows

var w = window.open(

 'https://example.com/according/to/web-extension',

 '_blank', 'width=100,height=100');

window.setTimeout(function () {

 w.postMessage({

 method: 'not-page-ready-but-another-allowed-method',

 data: {

 name: 'Key is expected by Web Extension.'

 + 'Inject XSS payload here if used via innerHTML',

 },

 });

 window.setTimeout(function () { w.close(); }, 0);

}, 1000);

Counter measures

It is the developer’s responsibility to check the origin

attribute of any messages received to ensure that

they only accept messages from origins they expect.

Be careful with Regular Expressions

/https*:\/\/www.example.com$/i vs.

https://wwwXexample.com

/https*:\/\/www.example.com$/i vs.

https://wwwXexample.com
/https*:\/\/www\.example\.com/i vs.

https://www.example.com.attacker.com

/https*:\/\/www.example.com$/i vs.

https://wwwXexample.com
/https*:\/\/www\.example\.com/i vs.

https://www.example.com.attacker.com
event.origin.indexOf('https://www.examp
> -1 vs. https://www.example.com.attacker

The requirement for validating origin holds true for

iFrames, Web Extensions or Web Sockets, too.

Read

.

Read .

Read

Exploiting xdLocalStorage (localStorage and

postMessage)

(https://grimhacker.com/2020/04/02/exploiting-

xdlocalstorage-localstorage-and-postmessage/)

Wladimir Palant's Blog (https://palant.info/)

OWASP HTML5 Security Cheat Sheet

(https://cheatsheetseries.owasp.org/cheatsheets/HTML5

https://grimhacker.com/2020/04/02/exploiting-xdlocalstorage-localstorage-and-postmessage/
https://palant.info/
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html

REDOS (REGULAR EXPRESSION DENIAL

OF SERVICE) ATTACKS

 and

Explain video on YouTube

(https://www.youtube.com/watch?v=iihd7lo6Ui8)

my remarks

(https://twitter.com/AndreJaenisch/status/13900310792

https://www.youtube.com/watch?v=iihd7lo6Ui8
https://twitter.com/AndreJaenisch/status/1390031079235596289

1. Don't use a RegEx (Regular Expression). Sometimes

using startsWith() or endsWith() are just

fine. Or applying some Functional Programming.

This sidesteps a whole can of worms :-)

2. Limit input size. Checking the length of a string is

comparably cheap. Error early if the input is too

large.

3. Pick into before RegEx. I assume that a find() or

indexOf() isn't too expensive. If an e-mail string

does not contain a @ your RegEx will fail anyway.

4. Anchor your RegEx. ^, $ and \b can go a long way.

5. Break it up. Similar to 1. having dedicated checks

might be more readable (and thus maintainable)

than one RegEx to rule them all. The syntax feels

arcane anyway, so not add up on it or otherwise

nobody will dare to touch it.

6. Choose your RegEx engine wisely. I only heard about

it last year, but it seems that there are several

engines out there. Some making guarantees. Rust's

RegEx would have saved Cloudflare from CPU

exhaustion in 2019 instead of the Lua one.

Back to attack vectors

TOOLING

ASSUMPTIONS

Use of ESLint

Use of VS Code (Visual Studio Code)

Use of npm or yarn as package manager

Use of Express.js or at least in communication with

Back-end team for HTML generation and server

configuration

Tools

ESLint plugins

VS Code extensions

Package installation

Test data

Define Content Security Policy

ESLINT PLUGINS

ESLint plugin anti trojan source

(https://github.com/lirantal/eslint-plugin-anti-

trojan-source)

ESLint plugin for Node.js security rules

(https://github.com/gkouziik/eslint-plugin-security-

node)

Back to tools

https://github.com/lirantal/eslint-plugin-anti-trojan-source
https://github.com/gkouziik/eslint-plugin-security-node

VS CODE EXTENSIONS

PACKAGE INSTALLATION

USING NPM

Bad

npm install

Good

npm ci

Better, but sometimes fail

npm ci --ignore-scripts

Back to tools

USING NPM

Bad

npm install

Good

npm ci

Better, but sometimes fail

npm ci --ignore-scripts

USING YARN

Bad

yarn

Good

yarn install --frozen-lockfile

Better, but sometimes fail

yarn install --frozen-lockfile --ignore-scripts

Back to tools

TEST DATA

Use the

 as test data for user controlled input.

Test your forms using

 web extension.

Big List of Naughty Strings

(https://github.com/minimaxir/big-list-of-naughty-

strings)

Bug Magnet

(https://bugmagnet.org/)

Back to tools

https://github.com/minimaxir/big-list-of-naughty-strings
https://bugmagnet.org/

DEFINE CONTENT SECURITY POLICY

Deploy

(

 might help)

Content Security Policy

(https://snyk.io/blog/how-can-a-content-security-

policy-prevent-xss-and-other-vulnerabilities/)

Laboratory (https://addons.mozilla.org/en-

GB/firefox/addon/laboratory-by-mozilla/)

Back to tools

https://snyk.io/blog/how-can-a-content-security-policy-prevent-xss-and-other-vulnerabilities/
https://addons.mozilla.org/en-GB/firefox/addon/laboratory-by-mozilla/

WHAT CAN YOU DO AS TEAM?

Following items focus more on coordinates efforts

within a single project.

Culture

Software architecture

Auth

Testing

Paperwork

CULTURE

Implement a no-blame-culture

Treat incidents as process failures

Back to efforts

SOFTWARE ARCHITECTURE

Learn about

Consider using or

 to outline the boundaries of your

application.

Use immutable data structures (

,

).

Familiarize yourself with AuthN (Authentication) and

AuthZ (Authorisation).

12-Factor app (https://12factor.net/)

Hexagonal architecture () Domain

Driven Design ()

Immutable.js

(https://immutable-js.com/) Immer

(https://immerjs.github.io/immer/)

https://12factor.net/
http://localhost:8000/?print-pdf
http://localhost:8000/?print-pdf
https://immutable-js.com/
https://immerjs.github.io/immer/

Separate customer data from app ones for stricter

security measures

Track the flow of data (monitoring as well as

architecture diagram)

Back to efforts

AUTH

Look into login with Magic Links. Alternatively use

OTPs (One-Time Passwords)

Study JWTs (JSON Web Tokens) (Read about

)

Apply consistent auth strategies

Allow for long time limit on revocable refresh tokens

Define short limit for session tokens

Store environment variables and secrets in a Vault

Different privileges require different grades of

security. Adapt accordingly

Best

Practices (https://blog.bitsrc.io/best-practices-for-

using-jwt-df3788433fd3)

Back to efforts

https://blog.bitsrc.io/best-practices-for-using-jwt-df3788433fd3

TESTING

PAPERWORK

Maintain a SBOM (Software Bill of Materials)

Write ADRs (Architectural Decision Records)

Prepare run-books in case of emergency (Get

inspired by

, c.f.

)

Print run-books in case of ransomware

Think about how to inform customers

Magento incident response plan

(https://github.com/talesh/response) Episode

22 of We Hack Purple podcast

(https://wehackpurple.com/podcast/episode-22-

with-guest-talesh-seeparsan/)

https://github.com/talesh/response
https://wehackpurple.com/podcast/episode-22-with-guest-talesh-seeparsan/

WHAT CAN YO DO AS COMPANY?

Security Champions

Implement 2FA (Two-Factor Authentification) for

developers and operators

Match passwords against

Check your backups regularly

Monitoring and

Chaos engineering

HIBP (Have I Been Pwned)

(https://haveibeenpwned.com/)

Intrusion Detection Systems

(https://en.wikipedia.org/wiki/Intrusion_detection_sy

https://haveibeenpwned.com/
https://en.wikipedia.org/wiki/Intrusion_detection_system

Contract penetration tester.

Publish security audits.

Add SLAs (Service Level Agreements) to your service p

(including Marketing).

Offer a Bug Bounty program and outline boundaries.

Provide an e-mail address for reporting security issues

process them.

Understand

Segment your network. Scan for open ports and close

you don't need them.

defense in depth

(https://en.wikipedia.org/wiki/Defense_in_depth_(com

https://en.wikipedia.org/wiki/Defense_in_depth_(computing)

Handle

Define your

.

Apply extra measures like VPN for distributed teams (S

attack vector on compromised machine).

Check your security certificates for expiration.

Check your security certificates for revoke.

responsible disclosures

(https://policymaker.disclose.io/policymaker/introduc

threat models (https://owasp.org/www-

community/Threat_Modeling)

https://policymaker.disclose.io/policymaker/introduction
https://owasp.org/www-community/Threat_Modeling

Familiarize with

 on security.

Register additional domains to guard against

domain squatting.

Raise awareness for boss fraud mails.

Scan for tokens in your codebases.

Train on

.

ISO 27001 norm

(https://www.iso.org/isoiec-27001-information-

security.html)

OWASP Juice Shop

(https://owasp.org/www-project-juice-shop/)

https://www.iso.org/isoiec-27001-information-security.html
https://owasp.org/www-project-juice-shop/

WHAT CAN YO DO AS

COMMUNITY?

Encourage use of SECURITY.md

(https://snyk.io/blog/ten-git-hub-security-best-

practices/)

https://snyk.io/blog/ten-git-hub-security-best-practices/

WHERE TO GO NOW?

1. .

2. Subscribe to the

.

3. Subscribe to

.

4. Study

.

Set up Snyk (https://snyk.io/product/snyk-code/)

We Hack Purple podcast

(https://wehackpurple.com/podcasts/)

Troy Hunt's podcast

(https://www.troyhunt.com/my-weekly-updates-

are-now-available-as-an-audio-podcast/)

OWASP Cheat Sheet Series

(https://cheatsheetseries.owasp.org/)

https://snyk.io/product/snyk-code/
https://wehackpurple.com/podcasts/
https://www.troyhunt.com/my-weekly-updates-are-now-available-as-an-audio-podcast/
https://cheatsheetseries.owasp.org/

IMAGE CREDITS

Snyk logo on solid background by

Water drop photo by

 on

 by

 on Flickr (

)

Alice and Bob Learn Application Security

(https://shehackspurple.ca/books/)

Snyk Press-Kit

(https://snyk.io/press-kit/)

Herbert Goetsch

(https://unsplash.com/@hg_photo) Unsplash

(https://unsplash.com/s/photos/water-drop)

Super Tux! (https://flic.kr/p/rm79j) Adam Piontek

(https://www.flickr.com/photos/damek/) CC

(https://creativecommons.org/licenses/by/2.0/)

https://shehackspurple.ca/books/
https://snyk.io/press-kit/
https://unsplash.com/@hg_photo
https://unsplash.com/s/photos/water-drop
https://flic.kr/p/rm79j
https://www.flickr.com/photos/damek/
https://creativecommons.org/licenses/by/2.0/
https://www.newgrounds.com/art/view/dommi-fresh/choose-your-weapon

ACHIEVEMENTS

Share (https://twitter.com/intent/tweet?

text=I%20attended%20Writing%20Less%20Insecure%20

2022-writing-less-insecure-

javascript%2F&hashtags=FOSDEM,wlij&via=AndreJaenis

https://twitter.com/intent/tweet?text=I%20attended%20Writing%20Less%20Insecure%20JavaScript%20and%20unlocked%20Achievements&url=https%3A%2F%2Fjaenis.ch%2Fhobbies%2Fspeaking%2Ffosdem-2022-writing-less-insecure-javascript%2F&hashtags=FOSDEM,wlij&via=AndreJaenisch

THANK YOU

 by

Writing less insecure JavaScript

(https://jaenis.ch/hobbies/speaking/fosdem-2022-

writing-less-insecure-javascript/) André Jaenisch

https://jaenis.ch/hobbies/speaking/fosdem-2022-writing-less-insecure-javascript/
https://jaenis.ch/

