
 1 / 8

Valgrind & Debuginfo

Mark J. Wielaard

Fosdem 2022

 2 / 8

Why debuginfo

● Translating binary to source and back
● For user to provide symbolic information

– Suppression files
● For valgrind to addresses as symbol names and source lines

– Annotate backtrace with symbols and source lines
– Inline information (--read-inline-info=yes)
– Variable locations (--read-var-info=no)

(*) For now we ignore unwind tables,

demangling and non-DWARF (PDB)

 3 / 8

What debuginfo

● Symbol tables

– .dynsym, .symtab (in.debug)

– Address (range) to symbol name
● Line table

– .debug_line

– Address to source file & line
● CUs (Compile Unit) and DIEs (Debug Info Entry)

– .debug_info/.debug_abbrev (tree of DIEs)

– Program scope (inlines, .debug_ranges)

– Variables & locations (.debug_loclist)

– Types

 4 / 8

Where debuginfo

● Binary itself
● Separate .debug file

– Found through /usr/lib/debug/.build-id/
– Found through .gnu_debuglink section

● valgrind-di-server (valgrind --debuginfo-server)
● debuginfod, if DEBUGINFOD_URLS env set

 5 / 8

Debuginfod support

● Since valgrind 3.18.1, patch by Aaron Merey
● Spawns debuginfod-find for build-id (*)

– Creates a cache to get .debug file quickly

$XDG_CACHE_HOME/debuginfod_client/
● Some distros now set DEBUGINFOD_URLS by default
● Federating server https://debuginfod.elfutils.org/

(*) https://bugs.kde.org/show_bug.cgi?id=445011

 6 / 8

valgrind DWARF reader (was) slow

● Exposed by debuginfod support

Suddenly there always was debuginfo for everything
● C++ hello world (linked against libstdc++)

Default valgrind (memcheck) with debuginfo (100MB total!)

– Before ~12 seconds
– After ~0.45 seconds
– Without debuginfo ~0.25
– Without valgrind ~0.005

 7 / 8

Why is/was reading debuginfo slow?

https://bugs.kde.org/show_bug.cgi?id=442061
● Fully skip CUs and children of DIEs without addresses
● Don’t read line tables for CUs without addresses
● Reuse of line tables and abbrevs (dwz)
● Lazy reading of abbrevs

https://bugs.kde.org/show_bug.cgi?id=442061

 8 / 8

What more can be done?

● There are still two DWARF readers
● DWARF6 might introduce multi-level line-table
● Even more lazy reading (read CU on first use of address)

– Use .debug_aranges
● Only do --read-var-info reading on error reporting

– But DWARF info is wrong way around
● Make debuginfod-find only read “chunks”

like valgrind-di-server (or get rid of chunks?)
● Long running debuginfod-find (keep connection)

