

 ToroV, a kernel in user-space, or sort of
www.torokernel.io

Matias Vara Larsen
matiasevara@torokernel.io

http://www.torokernel.io/

Who am I?
● I enjoy working on

operating systems and
playing with virtualization

● I worked at Citrix, Tttech,
Huawei ...

● https://github.com/MatiasVa
ra

https://github.com/MatiasVara
https://github.com/MatiasVara

Microservice #0

Logging

Microservice #1

Order

Microservice #2

Catalog

Logging

Order

Catalog

Monolithic Application

Decomposed Application
into Services

e.g., Amazon website

Microservice #0

Logging

Microservice #1

Order

Microservice #2

Catalog

Logging

Order

Catalog

Monolithic Application

Decomposed Application
into Services

e.g., Amazon website

Deployed as server-less

The Cloud provider
deals with deployment,
i.e.,performance and isolation

How server-less applications can
be deployed?

● By using containers, i.e., software-based virtualization
● By using VMs, i.e., hardware-based virtualization

– General Purpose OS
– unikernel

● These mechanisms are chosen based on a trade-off between
performance and security

Hardware Memory CPUs

Ring 3

Linux HostRing 0

Processes’ Namespace

Cgroup #0

Cgroup #1

Cgroup #2

Kernel

PID Namespace

Mount Namespace

Network Namespace

Microservice #0 Microservice #1 Microservice #2

Hardware Memory CPUs

Ring 3

Linux HostRing 0

Processes’ Namespace

Cgroup #0

Cgroup #1

Cgroup #2

Kernel

syscalls

PID Namespace

Mount Namespace

Network Namespace

Microservice #0 Microservice #1 Microservice #2

Virtual Machine #0

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

Microservice #0

Linux Host

Ring -1

Device Model

KVM

,e.g., QEMU, Firecraker

Device Model

syscalls

Kernel

VMExit

Virtual Machine #0

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

Microservice #0

Linux Host

Ring -1

Device Model

KVM

,e.g., QEMU, Firecraker

Device Model

syscalls

Kernel

VMExit

Virtual Machine #0

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

Microservice #0

Linux Host

Ring -1

Device Model

KVM

,e.g., QEMU, Firecraker

Device Model

syscalls

Kernel

VMExitVMs take long time
to be up and

running

Guests consume
a lot of resources

,e.g., memory, cpu,
on-disk image

A different set of drivers
may be needed depending

on the Cloud provider
device model

These issues end up by
limiting the number of
instances that a server

can host and the cost of
maintenance

Virtual Machine #0

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

Microservice #0

Linux Host

Ring -1

Device Model

KVM

,e.g., QEMU, Firecraker

Device Model

syscalls

Kernel

VMExit

Virtual Machine #1Virtual Machine #0

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

Microservices #0

Unikernel

Microservices #1

Linux/KVMRing -1

Device Model Device Model

[2] “Unikernels: library operating systems for the cloud”, Madhavapeddy et al., 2013
[3] “Unikernels: the next stage of Linux’s dominance”, Ali Raza et al., 2019

e.g., Toro, Osv, MirageOS, Unikraft, NanoVMs

Virtual Machine #1Virtual Machine #0

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

Microservices #0

Unikernel

Microservices #1

Linux/KVMRing -1

Device Model Device Model

[2] “Unikernels: library operating systems for the cloud”, Madhavapeddy et al., 2013
[3] “Unikernels: the next stage of Linux’s dominance”, Ali Raza et al., 2019

Could we simply offload the guest’s kernel
in the host?

e.g., Toro, Osv, MirageOS, Unikraft, NanoVMs

What is a kernel in user’s space?
● It is a way to offload guest’s kernel in the host
● It allows a guest application to run without a device model thus

reducing the attack surface of the host
● It prevents the host to be exposed by emulating kernel services.
● Approaches:

– User-Mode Linux
– Gvisor
– ToroV

Process #0

Hardware Memory CPUs

Ring 3

Linux Host

Ring -1

Linux Kernel (Process #1)

Filesystem

Networking

Syscall

Ptrace

Microservice #0

User-Mode Linux

Kernel

Virtual Machine #0

Hardware Memory CPUs

Operating System

Lightweight Kernel

Ring 0

Ring 3

Microservice #0

Linux Host

Ring -1
KVM

Kernel at host’s user-space syscalls

Kernel

Filesystem

Networking

VMExit
Reduced syscalls

Virtual Machine #0

Hardware Memory CPUs

Operating System

Lightweight Kernel

Ring 0

Ring 3

Microservice #0

Linux Host

Ring -1
KVM

Kernel at host’s user-space syscalls

Kernel

Filesystem

Networking

VMExit
Reduced syscalls

Virtual Machine #0

Hardware Memory CPUs

Operating System

Lightweight Kernel

Ring 0

Ring 3

Microservice #0

Linux Host

Ring -1
KVM

Kernel at host’s user-space syscalls

Kernel

Filesystem

Networking

VMExit
Reduced syscalls

Virtual Machine #0

Hardware Memory CPUs

Operating System

Lightweight Kernel (Sentry)

Ring 0

Ring 3

Microservice #0

Linux Host

Ring -1
KVM

Gvisorsyscalls

Kernel

Sentry

Gopher

VMExit
(halt)

https://gvisor.dev/docs/

9P

Reduced syscalls IO syscalls

Virtual Machine #0

Hardware Memory CPUs

Operating System

Lightweight Kernel (Sentry)

Ring 0

Ring 3

Microservice #0

Linux Host

Ring -1
KVM

Gvisorsyscalls

Kernel

Sentry

Gopher

VMExit
(halt)

https://gvisor.dev/docs/

9P

Reduced syscalls IO syscalls

What is ToroV?
● It is a minimalist kernel in user space in which syscalls from the guest

are forwarded to the host.
● It allows the user to configure what syscalls are allowed per application.
● It provides a modified stdlib that the user’s application must be compiled

within.
● It exposes a POSIX API based on hypercalls to the guest.
● It runs as a containerized process to reduce host attack surface.
● It allows the user to debug guest’s applications by simply using a GDB.

Reduced PID Namespace

Hardware Memory CPUs

Ring 0

Virtual Machine #0

Microservice #0

Linux Host

Ring -1
KVM

ToroV

Function call

Kernel

Glibc / fpcrtl

Hypercall
(out)

(Linux 64 bits ABI)

Chroot

VMM

HyperCalls

Configurable syscalls

Reduced PID Namespace

Hardware Memory CPUs

Ring 0

Virtual Machine #0

Microservice #0

Linux Host

Ring -1
KVM

ToroV

Function call

Kernel

Glibc / fpcrtl

Hypercall
(out)

(Linux 64 bits ABI)

Chroot

VMM

HyperCalls

Configurable syscalls

Reduced PID Namespace

Hardware Memory CPUs

Ring 0

Virtual Machine #0

Microservice #0

Linux Host

Ring -1
KVM

ToroV

Function call

Kernel

Glibc / fpcrtl

Hypercall
(out)

(Linux 64 bits ABI)

Chroot

VMM

HyperCalls

Configurable syscalls

Reduced PID Namespace

Hardware Memory CPUs

Ring 0

Virtual Machine #0

Microservice #0

Linux Host

Ring -1
KVM

ToroV

Function call

Kernel

Glibc / fpcrtl

Hypercall
(out)

(Linux 64 bits ABI)

Chroot

VMM

HyperCalls

Launches

VM

Compilation Process

Microservice

Includes
MyMicroservice.elf

Glibc / fpcrtl

MyMicroservice.bin
MyMicroservice.dbg

vmm

64 bits long mode
in Ring0

MyMicroservice.json

Virtual Machine

Memory Layout

PDT App’s binary Heap

0x0 0x2000 0x400200 0x600000 0x800000

Stack

VMM (host’s containerized process memory)

MMAP

Copy to/from user

Virtual Machine

Memory Layout

PDT App’s binary Heap

0x0 0x2000 0x400200 0x600000 0x800000

Stack

VMM (host’s containerized process memory)

MMAP

Copy to/from user

Virtual Machine

Memory Layout

PDT App’s binary Heap

0x0 0x2000 0x400200 0x600000 0x800000

Stack

VMM (host’s containerized process memory)

MMAP

Copy to/from user

HelloWorld example
{
 "Binary" : "HelloWorld.bin",
 "MountPoint" :
"./mountpoint",
 "Newpid" : "False",
 "Debug" :
 {
 "Allowed" : "False",
 "Port" : "1234"
 },
 "Hypercalls" : [
 {
 "Name" : "Ioctl",
 "Allowed" : "True"
 },
 {
 "Name" : "Write",
 "Allowed" : "True"
 },
 {
 "Name" : "Getrlimit",
 "Allowed" : "True"
 }
]
}

strace -f ../../src/vmm/vmm helloworld.json

ioctl(5, KVM_CREATE_VCPU, 0) = 6
mmap(NULL, 12288, PROT_READ|PROT_WRITE, MAP_SHARED, 6, 0) = 0x7f8908125000
ioctl(6, KVM_GET_SREGS, {cs={base=0xffff0000, limit=65535, selector=61440, type=11, present=1,
dpl=0, db=0, s=1, l=0, g=0, avl=0}, ...}) = 0
ioctl(6, KVM_SET_SREGS, {cs={base=0, limit=4294967295, selector=8, type=11, present=1, dpl=0,
db=0, s=1, l=1, g=1, avl=0}, ...}) = 0
ioctl(6, KVM_SET_REGS, {rax=0, ..., rsp=0x7fff00, rbp=0, ..., rip=0x400200, rflags=0x2}) = 0
clone(child_stack=0x513a30, flags=CLONE_VM|CLONE_FILES|CLONE_NEWNS|SIGCHLD) =
16528
wait4(16528, strace: Process 16528 attached
 <unfinished ...>
[pid 16528] chroot("./mountpoint") = -1 ENOENT (No such file or directory)
[pid 16528] chdir("/") = 0
[pid 16528] ioctl(6, KVM_RUN, 0) = 0
[pid 16528] ioctl(6, KVM_GET_REGS, {rax=0x1, ..., rsp=0x7ffe28, rbp=0x7ffe38, ..., rip=0x4005c5,
rflags=0x2}) = 0
[pid 16528] write(2, "Hello World, I am ToroV!\n", 25Hello World, I am ToroV!
) = 25
[pid 16528] ioctl(6, KVM_SET_REGS, {rax=0x19, ..., rsp=0x7ffe28, rbp=0x7ffe38, ..., rip=0x4005c5,
rflags=0x2}) = 0
[pid 16528] ioctl(6, KVM_RUN, 0) = 0

HelloWorld example
● ~ 1.5 MB of memory (top)
● ~ 7 ms (median)
● Write() syscall ~ 0.10 ms ~ x10 slower (0.012

ms)

Future Work
● Work on Glibc and other languages like Go or Rust
● Research about how ToroV compares with seccomp
● Enable the use of binaries without recompilation by replacing “syscall”

opcode by “out” opcode thus starting the program as-is
● Port the whole project to Rust
● Replace the current syscall mechanism for an asynchronous

mechanism, .e.g, virtio device for syscalls.
● Enable that different components handles different syscalls, e.g., SOA

Resources
● GitHub repository at https://github.com/torokernel/torov
● “Debugging applications that run as VM by using GDB”,

https://youtu.be/QC8pYtMOWe4
● “Using ToroV to isolate an app by using virtualization and

containerization technologies”, https://youtu.be/YDpE8jlwVPA
● “Simple HelloWorld in C in ToroV”, https://youtu.be/E_bQPc64WIM
● “Simple Echo server by relying on POSIX hypercalls”,

https://youtu.be/aJpcmZhDqMw

https://github.com/torokernel/torov
https://youtu.be/QC8pYtMOWe4
https://youtu.be/YDpE8jlwVPA
https://youtu.be/E_bQPc64WIM
https://youtu.be/aJpcmZhDqMw

Thanks!

www.torokernel.io

