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Who am I?
● I enjoy working on 

operating systems and 
playing with virtualization

● I worked at Citrix, Tttech, 
Huawei ...

● https://github.com/MatiasVa
ra
 

https://github.com/MatiasVara
https://github.com/MatiasVara
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Deployed as server-less

The Cloud provider
deals with deployment, 
i.e.,performance and isolation



 

How server-less applications can 
be deployed?

● By using containers, i.e., software-based virtualization
● By using VMs, i.e., hardware-based virtualization

– General Purpose OS
– unikernel

● These mechanisms are chosen based on a trade-off between 
performance and security
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Could we simply offload the guest’s kernel
in the host?

e.g., Toro, Osv, MirageOS, Unikraft, NanoVMs



 

What is a kernel in user’s space?
● It is a way to offload guest’s kernel in the host
● It allows a guest application to run without a device model thus 

reducing the attack surface of the host
● It prevents the host to be exposed by emulating kernel services.
● Approaches:

– User-Mode Linux
– Gvisor
– ToroV
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What is ToroV?
● It is a minimalist kernel in user space in which syscalls from the guest 

are forwarded to the host.
● It allows the user to configure what syscalls are allowed per application. 
● It provides a modified stdlib that the user’s application must be compiled 

within.
● It exposes a POSIX API based on hypercalls to the guest. 
● It runs as a containerized process to reduce host attack surface.
● It allows the user to debug guest’s applications by simply using a GDB.
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HelloWorld example
{
    "Binary" : "HelloWorld.bin",
    "MountPoint" : 
"./mountpoint",
    "Newpid" : "False",
    "Debug" : 
        {
            "Allowed" : "False",
            "Port" : "1234"
        },
    "Hypercalls" : [
        {
            "Name" : "Ioctl",
            "Allowed" : "True"
        },
        {
            "Name" : "Write",
            "Allowed" : "True"
        },
        {
            "Name" : "Getrlimit",
            "Allowed" : "True"
        }
   ]
}

strace -f ../../src/vmm/vmm helloworld.json

ioctl(5, KVM_CREATE_VCPU, 0)            = 6
mmap(NULL, 12288, PROT_READ|PROT_WRITE, MAP_SHARED, 6, 0) = 0x7f8908125000
ioctl(6, KVM_GET_SREGS, {cs={base=0xffff0000, limit=65535, selector=61440, type=11, present=1, 
dpl=0, db=0, s=1, l=0, g=0, avl=0}, ...}) = 0
ioctl(6, KVM_SET_SREGS, {cs={base=0, limit=4294967295, selector=8, type=11, present=1, dpl=0, 
db=0, s=1, l=1, g=1, avl=0}, ...}) = 0
ioctl(6, KVM_SET_REGS, {rax=0, ..., rsp=0x7fff00, rbp=0, ..., rip=0x400200, rflags=0x2}) = 0
clone(child_stack=0x513a30, flags=CLONE_VM|CLONE_FILES|CLONE_NEWNS|SIGCHLD) = 
16528
wait4(16528, strace: Process 16528 attached
 <unfinished ...>
[pid 16528] chroot("./mountpoint")      = -1 ENOENT (No such file or directory)
[pid 16528] chdir("/")                  = 0
[pid 16528] ioctl(6, KVM_RUN, 0)        = 0
[pid 16528] ioctl(6, KVM_GET_REGS, {rax=0x1, ..., rsp=0x7ffe28, rbp=0x7ffe38, ..., rip=0x4005c5, 
rflags=0x2}) = 0
[pid 16528] write(2, "Hello World, I am ToroV!\n", 25Hello World, I am ToroV!
) = 25
[pid 16528] ioctl(6, KVM_SET_REGS, {rax=0x19, ..., rsp=0x7ffe28, rbp=0x7ffe38, ..., rip=0x4005c5, 
rflags=0x2}) = 0
[pid 16528] ioctl(6, KVM_RUN, 0)        = 0



 

HelloWorld example
● ~ 1.5 MB of memory (top)
● ~ 7 ms (median)
● Write() syscall ~ 0.10 ms ~ x10 slower (0.012 

ms)



 

Future Work
● Work on Glibc and other languages like Go or Rust
● Research about how ToroV compares with seccomp
● Enable the use of binaries without recompilation by replacing “syscall” 

opcode by “out” opcode thus starting the program as-is
● Port the whole project to Rust
● Replace the current syscall mechanism for an asynchronous 

mechanism, .e.g, virtio device for syscalls. 
● Enable that different components handles different syscalls, e.g., SOA



 

Resources
● GitHub repository at https://github.com/torokernel/torov
● “Debugging applications that run as VM by using GDB”, 

https://youtu.be/QC8pYtMOWe4
● “Using ToroV to isolate an app by using virtualization and 

containerization technologies”, https://youtu.be/YDpE8jlwVPA 
● “Simple HelloWorld in C in ToroV”, https://youtu.be/E_bQPc64WIM
● “Simple Echo server by relying on POSIX hypercalls”, 

https://youtu.be/aJpcmZhDqMw 

https://github.com/torokernel/torov
https://youtu.be/QC8pYtMOWe4
https://youtu.be/YDpE8jlwVPA
https://youtu.be/E_bQPc64WIM
https://youtu.be/aJpcmZhDqMw


 

Thanks!

www.torokernel.io


