CsSC

ICT Solutions for
Brilliant Minds

Utilizing AMD GPUs: Tuning, programming models, and
roadmap

FOSDEM’22 HPC, Big Data and Data Science devroom
February 6%, 2022

George S. Markomanolis
Lead HPC Scientist, CSC — IT Center For Science Ltd.

LUMI

LUMI
LUMI, the Queen of the North

LUMI is aTier-o GPU-accelerated Tier-o0 GPU partition:
supercomputer that enables the HE, || (e T, W 'er;:oﬂ partltloz.l;) i
convergence of high- PaGr:tLiJon LUMI-D: f\sl\(/l)D | o;;(s ptog PeLrJe Y
performance computing, LU"QEC: Data nstine >
artificial intelligence, and high- L Analytics
performance data analytics. ARECen Interactive partition with 32
« Supplementary CPU . TB of memory and graphics

e LUME-ls : LUMI-F: GPUs for data analytics and

P2y Container High-speed Accelerated isvalizati
* ~200,000 AMD EPYC Cloud interconnect Storage Viava saton
Service
CPU cores
7 PB Flash-based storage

Possibility for combining LUMI-O: LUMI-P: layer with extreme I/O
different resources within a Emerging Lustre bandwidth of 2 TB/s and
single run. HPE Slingshot tech ng’,‘"?: Storage IOPS capability. Cray
technology. Stoi:; n ClusterStor E1000.
30 PB encrypted object s
storage (Ceph) for storing, \/ 80 PB parallel file system
Sharing and Staging data www.lumi-supercomputer.ev #lumisupercomputer #lumieurohpc

AMD GPUs (MI100 example)

csc

Shader Engine Shader Engine Shader Engine Shader Engine
cu cu cu cu
ks 5
° 3
o= [=]
é <
o)
> cu cu cu cu S
S T
£ S
g [EHTEET) (EETTEET | (T || (BT) |
ACE |ACE HWS
— L2 L2 —
ACE [ACE [DMA|
cu cu cu cu
3 5
e | [T || EHOET || T || I ||
5 <
(o] o)
o 3
S =4
£ S
= T
cu cu cu cu
Shader Engine Shader Engine Shader Engine Shader Engine
PCIGen4 M ultimedia Engine I ‘ XGMI Links ‘

AMD MI100

INFINITY FABRIC

Introduction to HIP

* Radeon Open Compute Platform (ROCm)

* HIP: Heterogeneous Interface for Portability is developed by AMD to program on AMD GPUs
e Itis a C++ runtime API and it supports both AMD and NVIDIA platforms

e HIP is similar to CUDA and there is no performance overhead on NVIDIA GPUs

* Many well-known libraries have been ported on HIP

* New projects or porting from CUDA, could be developed directly in HIP

e The supported CUDA API is called with HIP prefix (cudamalloc -> hipmalloc)

https://github.com/ROCm-Developer-Tools/HIP

https://github.com/ROCm-Developer-Tools/HIP

csc

Benchmark MatMul cuBLAS, hipBLAS

* Use the benchmark https://github.com/pc2/OMP-Offloading

* Matrix multiplication of 2048 x 2048, single precision

* All the CUDA calls were converted and it was linked with hipBlas

Matrix Multiplication (SP)

25000
20000

15000

GFLOP/s

10000

5000

V100 Mlwoo
GPU

https://github.com/pc2/OMP-Offloading

N-BODY SIMULATION

* N-Body Simulation (https://github.com/themathgeek13/N-Body-Simulations-CUDA) AllPairs N2

171 CUDA calls converted to HIP without issues, close to 1000 lines of code

32768 number of small particles, 2000 time steps
* Tune the number of threads equal to 256 than 1024 default at ROCm 4.1

N-Body Simulation

120
100
80

60

Seconds

40

V100 MI100 MI10 0*
GPU

https://github.com/themathgeek13/N-Body-Simulations-CUDA

BabelStream

* A memory bound benchmark from the university of Bristol

* Five kernels
o add (a[i]=b[i]+c[i])
o multiply (a[i]=b*c[i])
o copy (a[il=b[i])
o triad (a[i]=b[i]+d*c[i])
o dot (sum = sum+d*[i])

csc

Improving OpenMP performance on BabelStream for MI100

* Original call:

#pragma omp target teams distribute parallel for simd

* Optimized call

#pragma omp target teams distribute parallel tor simd thread [Imit(256) num teams(240)

* For the dot kernel we used 720 teams

Mixbench

* The purpose of this benchmark tool is to evaluate performance bounds of GPUs on
mixed operational intensity kernels.

* The executed kernel is customized on a range of different operational intensity values.
* Supported programming models: CUDA, HIP, OpenCL and SYCL

* We use three types of experiments combined with global memory accesses:
o Single precision Flops (multiply-additions)
o Double precision Flops (multiply-additions)
o Half precision Flops (multiply-additions)

* Following results present peak performance

* Source: https://github.com/ekondis/mixbench

https://github.com/ekondis/mixbench

Mixbench

10

GFLOPS

60000

50000

40000

30000

20000

10000

DP

Mixbench

m V100

SP

Half

csc

Mixbench

11

GFLOPS

60000

50000

40000

30000

20000

10000

MixBench

DP SP

mV100 mA100

Half

csc

Mixbench

12

GFLOPS

60000

50000

40000

30000

20000

10000

o

Mixbench

DP SP

mV100 mA100 mMI100

Half

csc

csc

Programming Models

* We have utilized with success at least the following programming models/interfaces
on AMD MI100 GPU:

oHIP

o OpenMP Offloading
ohipSYCL

o Kokkos

o Alpaka

13

SYCL (hipSYCL)

C++ Single-source Heterogeneous Programming for Acceleration Offload
* Generic programming with templates and lambda functions

* Big momentum currently, NERSC, ALCF, Codeplay partnership

SYCL 2020 specification was announced early 2021

Terminology: Unified Shared Memory (USM), buffer, accessor, data movement, queue

hipSYCL supports CPU, AMD/NVIDIA GPUs, Intel GPU (experimental)

https://github.com/illuhad/hipSYCL

14

https://github.com/illuhad/hipSYCL

—~+
Kokkos

Kokkos Core implements a programming model in C++ for writing performance portable applications targeting
all major HPC platforms. It provides abstractions for both parallel execution of code and data management.
(ECP/NNSA)

* Terminology: view, execution space (serial, threads, OpenMP, GPU,...), memory space (DRAM, NVRAM,
...), pattern, policy

Supports: CPU, AMD/NVIDIA GPUs, Intel KNL etc.

https://github.com/kokkos

15

Alpaka

16

Abstraction Library for Parallel Kernel Acceleration (Alpaka) library is a header-only
C++14 abstraction library for accelerator development. Developed by HZDR.

Similar to CUDA terminology, grid/block/thread plus element
Platform decided at the compile time, single source interface
Easy to port CUDA codes through CUPLA

Terminology: queue (non/blocking), buffers, work division
Supports: HIP, CUDA, TBB, OpenMP (CPU and GPU) etc.

https://github.com/alpaka-group/alpaka

csc

BabelStream Results

BabelStream Triad and Dot kernels

1600000
1400000
1200000
1000000

800000
600000
400000
200000

MB/s

0
NVIDIA NVIDIA°- AMD MI100 NVIDIA NVIDIA AMD MI100
V100 A100 V100 A100
Triad Dot
GPUs/Kernels

B CUDA/HIP mhipSYL m Kokkos* OpenMP Offloading

17

AMD Instinct MI250X

Two graphics compute dies (GCDs)

64GB of HBM2e memory per GCD (total 128GB)

26.5 TFLOPS peak performance per GCD

1.6 TB/s memory bandwidth per GCD

110 CU per GCD, totally 220 CU per GPU

Both GCDs are interconnected with 200 GB/s per direction

The interconnection is attached on the GPU (not on the CPU)

18

MI250X

csc

Memory Controller

Memory Controller

Infinity I | Infinity | I Infinity | ‘ Infinity ‘
cu cu
- = -
cu cu
Shader Engine Shader Engine
Shader Engine Shader Engine
cu cu
cu cu
| Infinity ‘ | Infinity | ’ Infinity | ‘ Infinity ‘

Memory Controller

Memory Controller

19

Infinity Fabric

Memory Controller

Memory Controller

I Infinity | ‘ Infinity ‘ |

Infinity |

| Infinity |

Ccu

cu

Ccu

cu

Shader Engine

Shader Engine

Shader Engine

Shader Engine

Ccu

cu

Ccu

Ccu

‘ Infinity | | Infinity ‘ | Infinity |

I Infinity |

Memory Controller

Memory Controller

Using MI250X

Utilize CRAY MPICH with GPU Support (export MPICH_GPU_SUPPORT ENABLED=1)

Use 1 MPI process per GCD, so 2 MPI processes per GPU and 8 MPI processes per node, if you plan to
utilize 4 GPUs

MI250x can have multiple contexts sharing in the same GPU , thus supports many MPI processes per
GPU by default

Be careful with contention as multiple contexts share resources

If the applications requires it, use different number of MPI processes

20

OpenACC

GCC will provide OpenACC (Mentor Graphics contract, now called Siemens EDA).
Checking functionality

HPE is supporting OpenACC v2.6 for Fortran. This is quite old OpenACC version.
HPE announced that they will not support OpenACC for C/C++

Clacc from ORNL: https://github.com/llvm-doe-org/llvm-project/tree/clacc/master
OpenACC from LLVM only for C (Fortran and C++ in the future)

o Translate OpenACC to OpenMP Offloading

If the code 1s in Fortran, we could use GPUFort

21

https://github.com/llvm-doe-org/llvm-project/tree/clacc/master

csc

Clacc

$ clang -fopenacc-print=omp -fopenacc-structured-ref-count-omp=no-hold -fopenacc-
present-omp=no-present jacobi.c
Original code:
#pragma acc parallel loop reduction(max:Inorm) private(i,j) \
present(newarr, oldarr) collapse(2)
fori=1;1<nx+1;i++) {
for G=1;j<ny + 1;j++) {

New code:
#pragma omp target teams map(alloc: newarr,oldarr) map(tofrom: Inorm)\
shared(newarr,oldarr) firstprivate(nx,ny,factor) reduction(max: Inorm) \
#pragma omp distribute private(i,j) collapse(2)
fori=1;1<nx+1;i1++) {

for G=1;j<ny + 1;j++) {

22

Results of BabelStream on NVIDIA V100

OpenACC vs OpenMP offload (V100 BabelStream)
900000.00

800000.00

700000.00
600000.00
m Copy
500000.00 m Mul
B Add
M Triad
400000.00 W Dot
300000.00
200000.00
100000.00
0.00

OpenACC (PGI) Clang 12.0.0 OpenACC GCC 10.1.0 OpenACC GCC 0G10 GCC 10.1.0 GCC 0G10

MB/s

GPUFORT

CUDA Fortran OpenACC Fortran OpenMP 4.5+
Quantum Espresso VASP, ICON, WRF, Dynamico, RAMSYS G P U F 0 RT

Source-to -source translator

OpenACC -> OpenMP

OpenACC -> HIP
OpenMP -> HIP
CUF -> HIP

Device code Host code
Fortran

HIPFORT | Gcc/Cray

GPUFORT | Dominic E. Charrier, Mazda Sabony | 5th EAGE
Workshop on HPC

GPUFort — Fortran with OpenACC (1/2)

Ifdef original file

program saxpy #ifdef __GPUFORT
call gpufort_acc_enter_region()
implicit none dev_x = gpufort_acc_copy(x(1:N))
integer, parameter :: N = 8192 dev_y = gpufort_acc_copy(y(1:N))
real:: y(N), x(N), a
integer:: i ! extracted to HIP C++file
a=2.0 call launch_axpy_12_b2e350_auto(0,c_null_ptr,dev_y,size(y,1),lbound(y,1),a,dev_x,size(x,1),lbound(x,1),n)
X(1)=5.0 call gpufort_acc_wait()
___________________ call gpufort_acc_exit_region()
!-Sélﬁg:c:d.at-a.cb|5);(>2(1:-1\15,3./(-1:?\15)ﬂ #else
ISacc parallel loop ISacc data copy(x(1:N),y(1:N))
doi=1,N —
y(i) =a* x(i) +y(i) 1Sacc parallel loop
enddo doi=1,N
P HGEEdats i yli)=a"xll) £yl
"""""""""" enddo
print *, y(1) 1Sacc end data
end program #endif
¥
25

GPUFort — Fortran with OpenACC (2/2)

Extern C

exterl;lqgt\l/gllg launch_axpy_13_b2e350_auto(
const int sharedmem,

hipStream_t stream,
float * __restrict__y,

constinty_ni,
constinty_lb1,
float a,
float * __restrict__x,
constintx_ni,
constint x_lb1,
intn){
const int axpy_13_b2e350_blockX = 128;
dim3 block(axpy_13_b2e350_blockX);
const int axpy_13_b2e350_NX = (1 +((n) - (1)));
const int axpy_13_b2e350_gridX = divideAndRoundUp(axpy_13_b2e350_NX, axpy_13_b2e350_blockX);
dim3 grid(axpy_13_b2e350_gridX);
//launch kernel

hipLaunchKernelGGL((axpy_13_b2e350), grid, block, sharedmem, stream, y,y_n1,y_lb1,a,x,x_n1,x_lb1,n);

26

Kernel

global__ void axpy_13_b2e350(
float * __restrict__y,
constinty_ni,
constinty_lb1,
float a,
float * __restrict__ x,
&Q’Eﬁl!l!x_nl’
const int x_lb1,
intn){
#undef _idx_y
#define _idx_y(a) ((a-(y_lb1)))
#undef _idx_x
#define _idx_x(a) ((a-(x_lb1)))
inti=1+(1)*(threadldx.x + blockldx.x * blockDim.x);
if (loop_cond(i,n,1)) {
yLidx y()1=(a*x[_idx x(D1+yL_idx_y(i));
}
}

csc

Porting diagram and Software Roadmap

Do you want to try
Parallel code with GPU new libraries and

re-write parts of the code?
/< \ Alpaka, SYCL

Kokkos, Raja
(not all programming
languages supported)

Is it C/C++ code? Is it Fort od7|

b £ 5 s | Cray! | | Clacc/Flacc2| If Fortran use GPUFort Yes
Is perf -
liatiolis ’{ Enjoy!

Y
A No
Use hipify tools GPUFort
Do you want to port

Is performance
good? the code to OpenMP?

\GPUFon issues

GPUFort forks Use hipfort and
prepare the kernels

imrpove data transfers

Profile and tune OpenMP/HIP calls, |

Port the OpenACC calls to OpenMP
Profile and tune the OpenACC calls Offloading to GPU and profile them.
Tools such as Clacc/Flacc could Help

Is performance
good?

1 HPE will support OpenACC only for Fortran.

Fix code, if any, that was not Currently is supported only for Fortran and
converted to HIP (for C/C++). OpenACCv2.0
Profile and tune, use hip libraries
where pogs|b|: 2 Research projects, not supported by the
vendor, not fully developed yet

3 ORNL has a contract with Mentor Graphics to
deliver GCC with OpenACC, not supported by the
vendor

> 4 Depending on the programming language and
7 if Clacc/Flacc can handle the supported calls

csc

Tuning

* Multiple wavefronts per compute unit (CU) is important to hide latency and instruction throughput

* Tune number of threads per block, number of teams for OpenMP offloading and other programming models
* Memory coalescing increases bandwidth

* Unrolling loops allow compiler to prefetch data

* Small kernels can cause latency overhead, adjust the workload

* Use of Local Data Share (LDS) memory

* Profiling, this could be a bit difficult without proper tools

28

+

csc

Conclusion/Future work

* A code written in C/C++ and MPI+OpenMP is a bit easier to be ported to OpenMP offloading compared to other
approaches.

* The hipSYCL, Kokos, and Alpaka could be a good option considering that the code is in C++.

* There can be challenges, depending on the code and what GPU functionalities are integrated to an application
It will be required to tune the code for high occupancy

* Track historical performance among new compilers

* GCC for OpenACC and OpenMP Offloading for AMD GPUs (issues will be solved with GCC 12.x and LLVM
13.x)

 Tracking how profiling tools work on AMD GPUs (rocprof, TAU, Score-P, HPCToolkit)

* Paper “Evaluating GPU programming models for the LUMI Supercomputer” will be presented at Supercomputing
Asia 2022

29

LUMI

George Markomanolis Follow us

Twitter: @LUMIhpc

Lead HPC Scientist
CSC - IT Center for Science Ltd. LinkedIn: LUMI supercomputer

YouTube: LUMI supercomputer

georgios.markomanolis@csc.fi

www.|lumi-supercomputer.eu

contact@lumi-supercomputer.eu

The acquisition and operation of the EuroHPC e
supercomputer is funded jointly by the EuroHPC Joint Leverage from i ot A
EuroHPC Undertaking, through the European Union’s Connecting the E U 0 REGIONAL COUNCIL
Europe'FaciIity and the Horizon 2020 researc.h ar?d 2014—2020 European Union OF KAINUU
innovation programme, as well as the of Participating European Reglona e E U R O

States FI, BE, CH, CZ, DK, EE, IS, NO, PL, SE.

https://www.lumi-supercomputer.eu/
mailto:contact@lumi-supercomputer.eu
https://twitter.com/LUMIhpc
https://www.linkedin.com/company/lumi-supercomputer
https://www.youtube.com/channel/UCb31KOJ6Wqu0sRpIRi_k8Mw

