
Utilizing AMD GPUs: Tuning, programming models, and 
roadmap
FOSDEM’22 HPC, Big Data and Data Science devroom
February 6th, 2022
George S. Markomanolis
Lead HPC Scientist, CSC – IT Center For Science Ltd.



LUMI

2



AMD GPUs (MI100 example)

3

AMD MI100



Introduction to HIP

• Radeon Open Compute Platform (ROCm)

• HIP: Heterogeneous Interface for Portability is developed by AMD to program on AMD GPUs

• It is a C++ runtime API and it supports both AMD and NVIDIA platforms

• HIP is similar to CUDA and there is no performance overhead on NVIDIA GPUs

• Many well-known libraries have been ported on HIP

• New projects or porting from CUDA, could be developed directly in HIP

• The supported CUDA API is called with HIP prefix (cudamalloc -> hipmalloc)

https://github.com/ROCm-Developer-Tools/HIP

4

https://github.com/ROCm-Developer-Tools/HIP


Benchmark MatMul cuBLAS, hipBLAS 

• Use the benchmark https://github.com/pc2/OMP-Offloading

• Matrix multiplication of 2048 x 2048, single precision

• All the CUDA calls were converted and it was linked with hipBlas 

5

0

5000

10000

15000

20000

25000

V100 MI100

GF
LO

P/
s

GPU

Matrix Multiplication (SP)

https://github.com/pc2/OMP-Offloading


N-BODY SIMULATION

• N-Body Simulation (https://github.com/themathgeek13/N-Body-Simulations-CUDA) AllPairs_N2

• 171 CUDA calls converted to HIP without issues, close to 1000 lines of code

• 32768 number of small particles, 2000 time steps

• Tune the number of threads equal to 256 than 1024 default at ROCm 4.1

6

0

20

40

60

80

100

120

V100 MI100 MI100*

Se
co

nd
s

GPU

N-Body Simulation

https://github.com/themathgeek13/N-Body-Simulations-CUDA


BabelStream

7

• A memory bound benchmark from the university of Bristol

• Five kernels

o add (a[i]=b[i]+c[i])
o multiply (a[i]=b*c[i])
o copy (a[i]=b[i])
o triad (a[i]=b[i]+d*c[i])
o dot (sum = sum+d*c[i])



Improving OpenMP performance on BabelStream for MI100

• Original call:

#pragma omp target teams distribute parallel for simd

• Optimized call

#pragma omp target teams distribute parallel for simd thread_limit(256) num_teams(240) 

• For the dot kernel we used 720 teams

8



Mixbench

• The purpose of this benchmark tool is to evaluate performance bounds of GPUs on 
mixed operational intensity kernels. 

• The executed kernel is customized on a range of different operational intensity values. 

• Supported programming models: CUDA, HIP, OpenCL and SYCL 

• We use three types of experiments combined with global memory accesses:
o Single precision Flops (multiply-additions)
o Double precision Flops (multiply-additions)
o Half precision Flops (multiply-additions)

• Following results present peak performance

• Source: https://github.com/ekondis/mixbench

9

https://github.com/ekondis/mixbench


Mixbench

10



Mixbench

11



Mixbench

12



Programming Models

• We have utilized with success at least the following programming models/interfaces 
on AMD MI100 GPU:

oHIP
oOpenMP Offloading
ohipSYCL
oKokkos
oAlpaka

13



SYCL (hipSYCL)

• C++ Single-source Heterogeneous Programming for Acceleration Offload

• Generic programming with templates and lambda functions

• Big momentum currently, NERSC, ALCF, Codeplay partnership

• SYCL 2020 specification was announced early 2021

• Terminology: Unified Shared Memory (USM), buffer, accessor, data movement, queue

• hipSYCL supports CPU, AMD/NVIDIA GPUs, Intel GPU (experimental)

• https://github.com/illuhad/hipSYCL

14

https://github.com/illuhad/hipSYCL


Kokkos

• Kokkos Core implements a programming model in C++ for writing performance portable applications targeting 
all major HPC platforms. It provides abstractions for both parallel execution of code and data management. 
(ECP/NNSA)

• Terminology: view, execution space (serial, threads, OpenMP, GPU,…), memory space (DRAM, NVRAM, 
…), pattern, policy

• Supports: CPU, AMD/NVIDIA GPUs, Intel KNL etc.

• https://github.com/kokkos

15



Alpaka

• Abstraction Library for Parallel Kernel Acceleration (Alpaka) library is a header-only 
C++14 abstraction library for accelerator development. Developed by HZDR.

• Similar to CUDA terminology, grid/block/thread plus element

• Platform decided at the compile time, single source interface

• Easy to port CUDA codes through CUPLA

• Terminology: queue (non/blocking), buffers, work division

• Supports: HIP, CUDA, TBB, OpenMP (CPU and GPU) etc.

• https://github.com/alpaka-group/alpaka

16



BabelStream Results

17



AMD Instinct MI250X

• Two graphics compute dies (GCDs) 

• 64GB of HBM2e memory per GCD (total 128GB)

• 26.5 TFLOPS peak performance per GCD

• 1.6 TB/s memory bandwidth per GCD

• 110 CU per GCD, totally 220 CU per GPU

• Both GCDs are interconnected with 200 GB/s per direction

• The interconnection is attached on the GPU (not on the CPU)

18



MI250X

19



Using MI250X

• Utilize CRAY MPICH with GPU Support (export MPICH_GPU_SUPPORT_ENABLED=1)

• Use 1 MPI process per GCD, so 2 MPI processes per GPU and 8 MPI processes per node, if you plan to 
utilize 4 GPUs

• MI250x can have multiple contexts sharing in the same GPU , thus supports many MPI processes per 
GPU by default

• Be careful with contention as multiple contexts share resources

• If the applications requires it, use different number of MPI processes

20



OpenACC

• GCC will provide OpenACC (Mentor Graphics contract, now called Siemens EDA). 
Checking functionality

• HPE is supporting OpenACC v2.6 for Fortran. This is quite old OpenACC version. 
HPE announced that they will not support OpenACC for C/C++

• Clacc from ORNL: https://github.com/llvm-doe-org/llvm-project/tree/clacc/master
OpenACC from LLVM only for C (Fortran and C++ in the future)

oTranslate OpenACC to OpenMP Offloading

• If the code is in Fortran, we could use GPUFort

21

https://github.com/llvm-doe-org/llvm-project/tree/clacc/master


Clacc

$ clang -fopenacc-print=omp -fopenacc-structured-ref-count-omp=no-hold -fopenacc-
present-omp=no-present jacobi.c
Original code:
#pragma acc parallel loop reduction(max:lnorm) private(i,j) \
present(newarr, oldarr) collapse(2) 
for (i = 1; i < nx + 1; i++) { 

for (j = 1; j < ny + 1; j++) {

New code:
#pragma omp target teams map(alloc: newarr,oldarr) map(tofrom: lnorm)\
shared(newarr,oldarr) firstprivate(nx,ny,factor) reduction(max: lnorm) \
#pragma omp distribute private(i,j) collapse(2) 
for (i = 1; i < nx + 1; i++) { 

for (j = 1; j < ny + 1; j++) {

22



Results of BabelStream on NVIDIA V100

23



24



GPUFort – Fortran with OpenACC (1/2)

25

Ifdef original file



GPUFort – Fortran with OpenACC (2/2)

26

Extern C 
routine

Kernel



Porting diagram and Software Roadmap

27



Tuning

• Multiple wavefronts per compute unit (CU) is important to hide latency and instruction throughput

• Tune number of threads per block, number of teams for OpenMP offloading and other programming models

• Memory coalescing increases bandwidth 

• Unrolling loops allow compiler to prefetch data

• Small kernels can cause latency overhead, adjust the workload

• Use of Local Data Share (LDS) memory

• Profiling, this could be a bit difficult without proper tools

28



Conclusion/Future work

• A code written in C/C++ and MPI+OpenMP is a bit easier to be ported to OpenMP offloading compared to other 
approaches.

• The hipSYCL, Kokos, and Alpaka could be a good option considering that the code is in C++. 

• There can be challenges, depending on the code and what GPU functionalities are integrated to an application

• It will be required to tune the code for high occupancy

• Track historical performance among new compilers 

• GCC for OpenACC and OpenMP Offloading for AMD GPUs (issues will be solved with GCC 12.x and LLVM 
13.x)

• Tracking how profiling tools work on AMD GPUs (rocprof, TAU, Score-P, HPCToolkit)

• Paper “Evaluating GPU programming models for the LUMI Supercomputer” will be presented at Supercomputing 
Asia 2022

29



www.lumi-supercomputer.eu

contact@lumi-supercomputer.eu

Follow us

Twitter: @LUMIhpc

LinkedIn: LUMI supercomputer

YouTube: LUMI supercomputergeorgios.markomanolis@csc.fi

CSC – IT Center for Science Ltd.

Lead HPC Scientist

George Markomanolis

https://www.lumi-supercomputer.eu/
mailto:contact@lumi-supercomputer.eu
https://twitter.com/LUMIhpc
https://www.linkedin.com/company/lumi-supercomputer
https://www.youtube.com/channel/UCb31KOJ6Wqu0sRpIRi_k8Mw

