
FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Network Traffic Classification
for Cybersecurity and

Monitoring

Luca Deri <deri@ntop.org>
@lucaderi

mailto:deri@ntop.org

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Who am I
•ntop founder (http://www.ntop.org): 
company that develops open-source  
network security and visibility tools:
◦ntopng: web-based traffic monitoring and security
◦nDPI: deep packet inspection toolkit
◦nScrub: software-based DDoS scrubber
◦n2n: peer-to-peer VPN

•Author of various open source software tools.
•Lecturer at the CS Dept, University of Pisa, Italy.

 2

http://www.ntop.org

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

nDPI at FOSDEM ‘21

 3

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

nDPI at FOSDEM ’22: Motivation
•For years most developers focused on efficient traffic/event capture and
processing (DPDK, PF_RING, Netmap, eBPF…).

•Unfortunately, traffic analysis is often still limited to simple top/bottom X
(elephants/mice) statistics.

•Goal of this presentation is to:
◦ Introduce to various algorithms that can be used in real life to analyse
traffic.
◦Show how nDPI has implemented them in order to be useful for live
traffic processing rather than for offline analysis (post-processing) as
most R/Python tools do due to their slow performance and inefficient
implementation.
◦Use nDPI a a foundation layer for cybersecurity and traffic analysis
applications.

 4

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

nDPI: A Recap
•nDPI is an open source toolkit that classifies traffic
using DPI, deep packet inspection.

 5

Layer 4 Protocol

Layer 7 Protocol

Good or Bad?

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

String Searching: Aho-Corasick [1/4]

 6

• Problem statement: substring matching (string that
starts with or ends with) on a dictionary of strings
(several thousand if not more) without doing a one-to-
one comparison.

• Typical use cases:
◦List of domain/host names to match for exclusion
(e.g. blacklist, spamming, advertisement etc) or
traffic classification (e.g. all DNS queries for
microsoft.com/windows.[net,com] -> DNS.Microsoft)

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

String Searching: Aho-Corasick [2/4]
•Aho-Corasick is a string searching 
algorithm that searches strings on a 
dictionary or words whose complexity 
is O (N + L) where N = length searched 
string, L =total length of the dictionary strings.

• It is based on automa that is built at 
runtime using the dictionary strings, i.e. if you need to add/remove
a word a new automaton needs to be built (just do a hot swap to
reload your data without stopping the application).

•The data structure has one node for every prefix of every string in
the dictionary. So if (bca) is in the dictionary, then there will be
nodes for (bca), (bc), (b), and (). If a node is in the dictionary then
it is a blue node. Otherwise it is a grey node. [wikipedia]

•

 7

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

String Searching: Aho-Corasick [3/4]
•nDPI implements a simple API for implementing string
substring searching.

•nDPI’s implementation (based on an existing open source
implementation significantly modified) supports “end
with” (e.g. “hello$”) that is useful when matching domain
names that need to end with a prefix and avoid unwanted
middle-string matches.

 8

void automataUnitTest() {
 void *automa = ndpi_init_automa();

 assert(automa);
 assert(ndpi_add_string_to_automa(automa, strdup("hello")) == 0);
 assert(ndpi_add_string_to_automa(automa, strdup("world")) == 0);
 ndpi_finalize_automa(automa);

 assert(ndpi_match_string(automa, "This is the wonderful world of nDPI") == 1);
 ndpi_free_automa(automa);
}

Check if the string to match
contains any of the
dictionary strings

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

String Searching: Aho-Corasick [4/4]

 9

0
225
450
675
900

1'000 10'000 100'000 500'000

Total Memory Usage (MB)

0

1,75

3,5

5,25

7

1'000 10'000 100'000 500'000

Automa Build Time (sec)

0

0,07

0,14

0,21
0,28

1'000 10'000 100'000 500'000

Seach Time (usec)

Tested on a DualCore 3,2 GHz Intel Core i3 (2010)

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

IP Matching: Radix Tree [1/5]
• A trie (pronounce as try, “pun on retrieval and tree”) is
tree not based on comparisons (<,>)
◦Each node has a letter and a “marker”.
◦ In case of multiple options per letter a list is used for
each possible tree branch.

 10

C

O

W

A

T

S

P

I

G N

{ Cats, Cat, Cow, Pig, Pin }

Root

No Match

Match

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

IP Matching: Radix Tree [2/5]
• In tries nodes can be added/removed/searched.
•Features
◦Ability to search strings starting with a given prefix.
◦Ability to generate string in dictionary order (if links
in nodes are alphabetically sorted).

•Performance
◦ insert O(w), where w is the length of the string to
be inserted, regardless of the number of stored
strings

 11

Sounds familiar?

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

IP Matching: Radix Tree [3/5]
•From a trie to a radix tree: same as trie where nodes
have a set of strings

 12

C

R

A

T

S

CA

RT

S

Trie Radix

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

IP Matching: Radix Tree [4/5]
•Patricia: Practical Algorithm to Retrieve Information
Coded in Alphanumeric, D.R. Morrison (1968).

•Radix tree where numbers are used instead of
strings.

•Use cases:
◦Efficient for subnet matching, IPv4/IPv6.
◦You can search partial matches (e.g. /24) and if
you keep searching and found a match for finding
a narrower match (e.g. /32).

 13

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

IP Matching: Radix Tree [5/5]

 14

int main(int argc, char *argv[]) {
 ndpi_patricia_tree_t *p_v4;
 ndpi_prefix_t prefix;
 struct in_addr a;
 u_int16_t maxbits = 32; /* use 128 for IPv6 */
 ndpi_patricia_node_t *node;

 assert(p_v4 = ndpi_patricia_new(32));

 a.s_addr = inet_addr(line);
 ndpi_fill_prefix_v4(&prefix, &a, 32, maxbits);
 assert((node = ndpi_patricia_lookup(p_v4, &prefix)) != NULL /* node added */);

 a.s_addr = inet_addr("1.2.3.4");
 ndpi_fill_prefix_v4(&prefix, &a, 32, maxbits);
 node = ndpi_patricia_search_best(p_v4, &prefix));

 ndpi_patricia_destroy(p_v4, NULL);

 return(0);
}

$ cd nDPI/tests/performance

$./patriciasearch
Patricia tree (IPv4) with 76378 IP prefixes built successfully in 0.05 sec [17.9 MB]
String searched in 0.10 usec

Tested on a DualCore 3,2 GHz Intel Core i3 (2010)

You can add node “metadata”

union ndpi_patricia_node_value_t {
 void *user_data;

 /* User-defined values */
 union {
 struct {
 u_int32_t user_value, additional_user_value;
 } uv32;

 u_int64_t uv64;
 } u;
};

typedef struct _ndpi_patricia_node_t {
 …
 union ndpi_patricia_node_value_t value;
} ndpi_patricia_node_t;

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Probabilistic Counting: HyperLogLog [1/3]

•Problem Statement:
◦How can I get an estimate (i.e. approximate) of a number
of unique set elements ? Of course you can do this in
many ways (e.g. a hash table) but at a higher memory
cost.

•Use Cases:
◦How many IP addresses has my host contacted in the past
5 minutes?
◦How many different IP countries has contacted host X ?
◦What is the host that has issues most different DNS host
query names?

 15

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Probabilistic Counting: HyperLogLog [2/3]

•HyperLogLog is a probabilistic data structure used
to estimate the cardinality of a set.

• It improves probabilistic counting by hashing every element,
and counting the amount of 0s to the left of such hash.

 16

HyperLogLog Paper: http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Probabilistic Counting: HyperLogLog [3/3]

•Usage

•Memory and Cardinality Error

 17

struct ndpi_hll hll_contacted_hosts, hll_contacted_countries;

asset(ndpi_hll_init(&hll_contacted_hosts, 8 /* i */) == 0);
asset(ndpi_hll_init(&hll_contacted_contries, 8 /* i */) == 0);

ndpi_hll_add(&hll_contacted_hosts, hostname, strlen(hostname));
ndpi_hll_add(&hll_contacted_countries, country, strlen(country));

num_contacted_hosts = ndpi_hll_count(&hll_contacted_hosts);
num_contacted_countries = ndpi_hll_count(&hll_countries_contacts);

ndpi_hll_destroy(&hll_contacted_hosts);
ndpi_hll_destroy(&hll_contacted_countries);

 StdError = 1.04/sqrt(2^i)

 [i: 4] 16 bytes [StdError: 26%]
 [i: 5] 32 bytes [StdError: 18.4%]
 [i: 6] 64 bytes [StdError: 13%]
 [i: 7] 128 bytes [StdError: 9.2%]
 [i: 8] 256 bytes [StdError: 6.5%]
 [i: 9] 512 bytes [StdError: 4.6%]
 [i: 10] 1024 bytes [StdError: 3.25%]
 [i: 11] 2048 bytes [StdError: 2.3%]
 [i: 12] 4096 bytes [StdError: 1.6%]
 [i: 13] 8192 bytes [StdError: 1.15%]
 [i: 14] 16384 bytes [StdError: 0.81%]
 [i: 15] 32768 bytes [StdError: 0.57%]
 [i: 16] 65536 bytes [StdError: 0.41%]
 [i: 17] 131072 bytes [StdError: 0.29%]
 [i: 18] 262144 bytes [StdError: 0.2%]
 [i: 19] 524288 bytes [StdError: 0.14%]

Estimate

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Anomaly Detection [1/10]
•Anomaly: an observation which deviates so much
from other observations as to arouse suspicions that
it was generated by a different mechanism.

 18

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Anomaly Detection [2/10]
•Finding anomalies is manyfold:

 19

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Anomaly Detection [3/10]
• Some definitions:
◦Series: an ordered sequence of numbers.
◦Order: the index of a number in the series.
◦Timeseries: a series of data points in time order.
◦Observation: the numeric value observed (in reality) at a
specified time.
◦Forecast: estimation of an expected value (that we don’t know
yet) at a specific time.
◦Forecast Error: positive/negative difference of the observation
with respect to the forecast. Usually the error is reported as
square (SSE) i.e. the sum of squared errors of a series
SUM((observationi - forecasti) ^2)

 20

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Anomaly Detection [4/10]
•A time series is stationary when its statistical properties (e.g.
mean and variance) do not change overtime, i.e. if they have
no trend or seasonality.

•Counters are not stationaries, gauges are. Solution: store
counters as value difference (observation(t) -
observation(t-1)) rather than absolute values.

•Goal: Given a timeseries, we want to find anomalies by
detecting those observations that fall outside of the expected
low/high value forecast.

•Note: this technique complements static low/high threshold
that are still recommended to have. 

 21

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Anomaly Detection [5/10]
•In summary we need to implement a system that
forecasts the next value and produces alerts.

 22

-80

-40

0

40

80

120

160

Series Prediction Low Band High Band

Observations

Predictions

Observations End

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Anomaly Detection [6/10]
• nDPI implements three “smoothing” functions for data
forecast:
◦Single exponential smoothing: value
◦Double exponential smoothing: value + trend
◦Triple exponential smoothing (Holt-Winters): value +
trend + seasonality.
◦Notes:
!When a series is repetitive at regular intervals, it is
defined seasonal.

!Season Length: the number of data points in a season.

 23

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Anomaly Detection [7/10]
•Definitions:
◦α : Smoothing factor
◦β: Trend factor
◦γ: Seasonal smoothing factor

•All values are in 0..1 range: close to 1 means that recent
values are more important than past values, close to 0 means
that past values are more important than more recent ones.
◦Single exponential smoothing: α
◦Double exponential smoothing: α, and β
◦Triple exponential smoothing: α, β, and γ

 24

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Anomaly Detection [8/10]

 25

 /* Single Exponential Smoothing [60 bytes] */

 int ndpi_ses_init(struct ndpi_ses_struct *ses, double alpha, float significance);
 int ndpi_ses_add_value(struct ndpi_ses_struct *ses, const u_int64_t _value, double *forecast, double *confidence_band);
 void ndpi_ses_fitting(double *values, u_int32_t num_values, float *ret_alpha);

 /* ******************************* */

 /* Double Exponential Smoothing [80 bytes] */
 int ndpi_des_init(struct ndpi_des_struct *des, double alpha, double beta, float significance);
 int ndpi_des_add_value(struct ndpi_des_struct *des, const u_int64_t _value, double *forecast, double *confidence_band);
 void ndpi_des_fitting(double *values, u_int32_t num_values, float *ret_alpha, float *ret_beta);

 /* ******************************* */

 /* Triple Exponential Smoothing (Holt-Winters) [172 bytes] */
 int ndpi_hw_init(struct ndpi_hw_struct *hw, u_int16_t num_periods, u_int8_t additive_seeasonal,
 double alpha, double beta, double gamma, float significance);
 void ndpi_hw_free(struct ndpi_hw_struct *hw);
 int ndpi_hw_add_value(struct ndpi_hw_struct *hw, const u_int64_t value, double *forecast, double *confidence_band);

•Exponential Smoothing API

•Note
◦The process of finding the best value for α and β is
named fitting.

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Anomaly Detection [9/10]

 26

 struct ndpi_des_struct des;
 u_int8_t trace = 0;
 double v[] = {
 31.908466339111,
 87.339714050293,
 173.47660827637,
 213.92568969727,
 223.32124328613,
 230.60134887695,
 238.09457397461,
 245.8137512207,
 251.09228515625,
 251.09228515625,
 259.21997070312,
 261.98754882812,
 264.78540039062,
 264.78540039062,
 270.47451782227,
 173.3671875,
 288.34222412109,
 288.34222412109,
 304.24795532227,
 304.24795532227,
 350.92227172852,
 384.54431152344,
 423.25942993164,
 439.43322753906,
 445.05981445312,
 445.05981445312,
 445.05981445312,
 445.05981445312
 };

 u_int i, num = sizeof(v) / sizeof(double);
 float alpha = 0.9, beta = 0.5;
 FILE *fd = fopen("/tmp/des_result.csv", "w");

 assert(ndpi_des_init(&des, alpha, beta, 0.05) == 0);

 if(trace) {
 printf("\nDouble Exponential Smoothing [alpha: %.1f][beta: %.1f]\n", alpha, beta);

 if(fd)
 fprintf(fd, "index;value;prediction;lower;upper;anomaly\n");
 }

 for(i=0; i<num; i++) {
 double prediction, confidence_band;
 double lower, upper;
 int rc = ndpi_des_add_value(&des, v[i], &prediction, &confidence_band);

 lower = prediction - confidence_band, upper = prediction + confidence_band;

 if(trace) {
 printf("%2u)\t%12.3f\t%.3f\t%12.3f\t%12.3f\t %s [%.3f]\n", i, v[i], prediction, lower, upper,
 ((rc == 0) || ((v[i] >= lower) && (v[i] <= upper))) ? "OK" : "ANOMALY",
 confidence_band);

 if(fd)
 fprintf(fd, "%u;%.0f;%.0f;%.0f;%.0f;%s\n",
 i, v[i], prediction, lower, upper,
 ((rc == 0) || ((v[i] >= lower) && (v[i] <= upper))) ? "OK" : "ANOMALY");
 }
 }

 if(fd) fclose(fd);

 ndpi_des_fitting(v, num, &alpha, &beta); /* Compute the best alpha/beta */

 Return code
 0 Too early: we're still in the learning phase.
 1 Normal processing: forecast and confidence_band are meaningful

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Anomaly Detection [10/10]

 27

Double Exponential Smoothing [alpha: 0.9][beta: 0.5]

Index Value Prediction Upper Lower
 0) 31.908 31.000 31.000 31.000 LEARNING [0.000]
 1) 87.340 81.400 73.637 89.163 OK [7.763]
 2) 173.477 166.360 156.529 176.191 OK [9.831]
 3) 213.926 213.844 205.290 222.398 OK [8.554]
 4) 223.321 227.213 218.717 235.709 OK [8.496]
 5) 230.601 232.954 224.846 241.062 OK [8.108]
 6) 238.095 239.399 231.821 246.976 OK [7.578]
 7) 245.814 245.714 238.608 252.819 OK [7.106]
 8) 251.092 251.424 244.719 258.129 OK [6.705]
 9) 251.092 251.804 245.424 258.185 OK [6.380]
10) 259.220 258.680 252.594 264.767 OK [6.086]
11) 261.988 261.312 255.482 267.142 OK [5.830]
12) 264.785 264.135 258.533 269.736 OK [5.602]
13) 264.785 264.356 258.955 269.757 OK [5.401]
14) 270.475 269.618 264.397 274.840 OK [5.222]
15) 173.367 183.016 175.969 190.063 ANOMALY [7.047]
16) 288.342 273.349 263.588 283.109 ANOMALY [9.760]
17) 288.342 288.975 279.479 298.471 OK [9.496]
18) 304.248 304.499 295.253 313.744 OK [9.246]
19) 304.248 305.827 296.780 314.874 OK [9.047]
20) 350.922 346.538 337.585 355.490 OK [8.952]
21) 384.544 382.767 374.005 391.528 OK [8.762]
22) 423.259 422.045 413.467 430.623 OK [8.578]
23) 439.433 440.802 432.374 449.231 OK [8.428]
24) 445.060 447.267 438.961 455.573 OK [8.306]
25) 445.060 446.893 438.717 455.070 OK [8.177]
26) 445.060 446.004 437.971 454.037 OK [8.033]
27) 445.060 445.463 437.573 453.353 OK [7.890]

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Data Comparison: Binning [1/5]
•Data binning is a technique that allows data to be classified in
a small number of “bins”, that in essence is a vector of positive
numbers where each bin value contains the number of
observations.

•Bins allow data to be classified using a small set of intervals
instead of individual values that can lead to observation errors.

•Data is classified by
◦defining the bin number
◦adding data to the individual bins
◦normalising the data so that bins with different number of
elements can still be compared.

 28

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Data Comparison: Binning [2/5]
•Bins do not store the data order (i.e. how the
individual events happened) but just the data.

•Example: if you want to compare two hosts if they
use similar protocols you can create a set of bins
(e.g. 256 bins as the number of protocols
recognised by nDPI) and for each new flow increase
the bin-id that corresponds to the protocol. Then
you can compare bins for equality to see what hosts
are similar.

 29

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Data Comparison: Binning [3/5]
•Bins are an efficient way of storing observations but we
need to find a way to compare them to find similarities
(e.g. two hosts with the same behaviour).

•Use Cases:
◦Compare all hosts timeseries to find hosts that have a
similar behaviour.
◦Compare two initial connection bytes sequence to see if
they are similar.
◦Find hosts with the same packet size distribution. Note:
packets lengths can be grouped in 6 bins of size <= 64
bytes, 65-128, 129-256, 257-512, 513-1024, 1025+.

 30

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Data Comparison: Binning [4/5]

 31

https://github.com/ntop/nDPI/blob/dev/rrdtool/rrd_similarity.c

void find_rrd_similarities(rrd_file_stats *rrd, u_int num_rrds) {
 u_int i, j, num_similar_rrds = 0, num_potentially_zero_equal = 0;

 for(i=0; i<num_rrds; i++) {
 for(j=i+1; j<num_rrds; j++) {
 /*
 Average is the circle center, and stddev is the radius
 if circles touch each other then there is a chance that
 the two rrds are similar
 */

 if((rrd[i].average == 0) && (rrd[i].average == rrd[j].average)) {
 if(!skip_zero)
 printf("%s [%.1f/%.1f] - %s [%.1f/%.1f] are alike\n",
 rrd[i].path, rrd[i].average, rrd[i].stddev,
 rrd[j].path, rrd[j].average, rrd[j].stddev);

 num_potentially_zero_equal++;
 } else if(circles_touch(rrd[i].average, rrd[i].stddev, rrd[j].average, rrd[j].stddev)
) {
 float similarity = ndpi_bin_similarity(&rrd[i].b, &rrd[j].b, 0, similarity_threshold);

 if((similarity >= 0) && (similarity < similarity_threshold)) {
 if(verbose)
 printf("%s [%.1f/%.1f] - %s [%.1f/%.1f] are %s [%.1f]\n",
 rrd[i].path, rrd[i].average, rrd[i].stddev,
 rrd[j].path, rrd[j].average, rrd[j].stddev,
 (similarity == 0) ? "alike" : "similar",
 similarity
);

 num_similar_rrds++;
 }
 }
 }
 }

 printf("Found %u (%.3f %%) similar RRDs / %u zero alike RRDs [num_rrds: %u]\n",
 num_similar_rrds,
 (num_similar_rrds*100.)/(float)(num_rrds*num_rrds),
 num_potentially_zero_equal,
 num_rrds);
}

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Data Comparison: Binning [5/5]

 32

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Additional nDPI Features
• Streaming Data Analysis

• Clustering (Unsupervised Machine Learning)

• Data Serialisation, Jitter/Entropy…..

 33

int ndpi_cluster_bins(struct ndpi_bin *bins, u_int16_t num_bins,
 u_int8_t num_clusters, u_int16_t *cluster_ids,
 struct ndpi_bin *centroids);

struct ndpi_analyze_struct* ndpi_alloc_data_analysis(u_int16_t _max_series_len);
 void ndpi_init_data_analysis(struct ndpi_analyze_struct *s, u_int16_t _max_series_len);
 void ndpi_free_data_analysis(struct ndpi_analyze_struct *d, u_int8_t free_pointer);
 void ndpi_reset_data_analysis(struct ndpi_analyze_struct *d);
 void ndpi_data_add_value(struct ndpi_analyze_struct *s, const u_int32_t value);

 /* Sliding-window only */
 float ndpi_data_window_average(struct ndpi_analyze_struct *s);
 float ndpi_data_window_variance(struct ndpi_analyze_struct *s);
 float ndpi_data_window_stddev(struct ndpi_analyze_struct *s);

 /* All data */
 float ndpi_data_average(struct ndpi_analyze_struct *s);
 float ndpi_data_entropy(struct ndpi_analyze_struct *s);
 float ndpi_data_variance(struct ndpi_analyze_struct *s);
 float ndpi_data_stddev(struct ndpi_analyze_struct *s);
 u_int32_t ndpi_data_last(struct ndpi_analyze_struct *s);
 u_int32_t ndpi_data_min(struct ndpi_analyze_struct *s);
 u_int32_t ndpi_data_max(struct ndpi_analyze_struct *s);
 float ndpi_data_ratio(u_int32_t sent, u_int32_t rcvd);

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Finally, Some Good News
•Recently Google awarded nDPI.
• (As soon as we receive the payment) We want to
invest this money in nDPI development.

•Those interested to contribute to nDPI (being paid),
are encouraged to contact us.

 34

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

https://github.com/ntop/nDPI

 35

