Network Traffic Classification
for Cybersecurity and
Monitoring

Luca Deri <deri@ntop.org>
@|ucaderi

mailto:deri@ntop.org

Who

*ntop founder (http://www.
company that develops o

network security and visibility tools:

am |

Ntop.org):
DEeNn-source

ontopnQ: web-based traffic monitoring and security

-NDPI: deep packet inspection toolkit

oNScrub: software-based
on2n: peer-to-peer VPN

DDOoS scrubber

* Author of various open source software tools.

Lecturer at the CS Dept, University of Pisa, Italy.

http://www.ntop.org

NDPl at FOSDEM 21

FQS‘BE:M,Zi @ About News Schedule Stands Volunteer Practical

Online / 6&7 February 2021 ﬁ News Sponsors Contact

FOSDEM 2021 / Schedule / Events / Developer rooms / Network monitoring, discovery and inventory / Using nDPI for Monitoring and Security

Using nDPI for Monitoring and Security
nDPI in practice

A Track: Network monitoring, discovery and inventory devroom
A Room: D.network

& Day: Saturday

» Start: 16:20

W End: 16:55

® Video with Q&A: D.network

H Video only: D.network

¥ Chat: Join the conversation!

As most of modern traffic is now encrypted, deep packet inspection is becoming a key component for providing visibility in network traffic. nDPI is an open
source toolkit able to detect application protocols both in plain text and encrypted traffic, extract metadata information, and detect relevant cybersecurity

information. This talk shows how nDPI| can be used in real life to monitor network traffic, report key information metrics and detect malicious
communications.

The pervasive use of encrypted protocols and new communication paradigms based on mobile and home IoT devices has obsoleted traffic analysis
techniques that relied on clear text analysis. DPI (Deep Packet Inspection) is a key component to provide network visibility on network traffic. nDPI is an
open source toolkit designed to detect application protocols on both plain and encrypted traffic. it is also able to extract relevant metadata information
including metrics on encrypted traffic for easy classification and accounting. This talk introduces nDPI, demonstrate how to use it in real life examples, and it

presents how it can be effectively used not only for traffic monitoring but also in cybersecurity being it able to detect unusual traffic behaviour and security
issues.

nto p FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

NDPIl at FOSDEM '22: Motivation

«For years most developers focused on efticient traffic/event capture and
processing (DPDK, PF_RING, Netmap, eBPF...).

« Unfortunately, traffic analysis is often still limited to simple top/bottom X
(elephants/mice) statistics.

*Goal of this presentation is to:

o Introduce to various algorithms that can be used in real life to analyse
traffic.

o Show how nDPI has implemented them in order to be useful for live
traffic processing rather than for offline analysis (post-processing) as
most R/Python tools do due to their slow performance and inefficient
Implementation.

-Use nDPI a a foundation layer for cybersecurity and traffic analysis
applications.

NnD
usl

NDPI: A Recap

Pl Is an ope

ng DPI, dee

Layer 4 Protocol

TCP/HTTP

ntop

N source too

0 packet Iins

Kit 1

OeEC

nat classifies traffic

100N,

Good or Bad?

Layer 7 Protocol

FOSDEM 2022 - ntop.org

https://github.com/ntop/nDPI

String Searching: Aho-Corasick [1/4]

* Problem statement: substring matching (string that
starts with or ends with) on a dictionary of strings
(several thousand it not more) without doing a one-to-
one comparison.

* [ypical use cases:

o List of domain/host names to match for exclusion
(e.g. blacklist, spamming, advertisement etc) or
traffic classification (e.g. all DNS queries for
microsoft.com/windows.[net,com] -> DNS.Microsoft)

String Searching: Aho-Corasick [2/4]

* Aho-Corasick is a string searching
algorithm that searches strings on a
dictionary or words whose complexity
is O (N + L) where N = length searched
string, L =total length of the dictionary strings.

|t Is based on automa that is built at
runtime using the dictionary strings, i.e. it you need to add/remove
a word a new automaton needs to be built (just do a hot swap to
reload your data without stopping the application).

* The data structure has one node for every prefix of every string in
the dictionary. So if (bca) is in the dictionary, then there will be
nodes for (bca), (bc), (b), and (). If a node is in the dictionary then
it Is a blue node. Otherwise it is a node. [wikipedia]

String Searching: Aho-Corasick [3/4]

*NDPIl implements a simple API for implementing string
substring searching.

void EMR LR Vb Ra R () |

}

void *automa = ndpi_init_automa();

assert(automa);

assert(ndpi_add_string_to_automa(automa, strdup("hello")) == 0); (::f]EB(DP(if tf]f} EStrir]gJ t() rT]Eit(jf]
assert(ndpi_add_string_to_automa(automa, strdup("world")) == 0);

ndpi_finalize_automa(automa); Con’[a|ns any Of the
assert(ndpi_match_string(automa, "This is the wonderful world of nDPI") == 1); : : :
ndpi_free_automa(automa); Cj|(3t|C)r]Eir§/ 55tr|r]§355

*NDPIl's implementation (lbased on an existing open source
implementation significantly moditied) supports “end
with” (e.g. “hello$”) that is useful when matching domain
names that need to end with a prefix and avoid unwanted
middle-string matches.

String Searching: Aho-Corasick [4/4]

©O Total Memory Usage (MB)

900
675
450
225
0
1'000 10'000 100'000 500'000
O Automa Build Time (sec) O Seach Time (usec)
7 0,28
5,25 0,21
3.5 0,14
1,75 0,07
0 0
1'000 10'000 100'000 500'000 1'000 10°000 100'000 500°000

Tested on a DualCore 3,2 GHz Intel Core i3 (2010)

nto p FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

P Matching: Radix Tree [1/5]

* A trie (pronounce as
tree not based on co

try, “pun on retrieval and tree”) is
mparisons (<,>)

oEach node has a le

ter and a "marker”.

o|In case of multiple options per letter a list is used for
each possible tree branch.

Q Root @/@ Cb\

Q No Match I

Q Match g

P Matching: Radix Tree [2/5]

*|n tries nodes can be added/removed/searched.

Sounds familiar?

*Features
o Abllity to search strings starting with a given prefix.

o Ability to generate string in dictionary order (if links
in nodes are alphabetically sorted).

e Performance

oinsert O(w), where w is the length of the string to
be inserted, regardless of the number of stored
strings

P Matching: Radix Tree [3/5]

From a trie to a radix tree: same as trie where nodes
nave a set of strings

e o
Trie @ — Radix
ey ?@®

P Matching: Radix Tree [4/5]

e Patricia: Practical A

Coded in Alphanumeric, D.R. Morrison (1968).
* Radix tree where numbers are used instead of

strings.
e Use cases:

o Efficient for su
o YOU can searc

N partial matc

you keep searching and fou
a narrower match (e.qg. /32).

onet matching, IPv4/IPvo.
nes (e.qg. /24) and if

nd a match for findi

gorithm to Retrieve Information

g

P Matching: Radix Tree [5/5

int main(int argc, char xargv[]) {
ndpi_patricia_tree_t *xp_v4;
ndpi_prefix_t prefix;
struct in_addr a;
u_intl6_t maxbits = 32; /x use 128 for IPv6 x/

i ici ; 1 9
ndpi_patricia node t *node You can add node “metadata
assert(p_v4 = ndpi_patricia_new(32));
a.s_addr = inet_addr(line); union ndpi_patricia_node_value_t {
ndpi_fill_prefix_v4(&prefix, &a, 32, maxbits); void *user_data;

assert((node = ndpi_patricia_lookup(p_v4, &prefix)) != NULL /% node added */);
/* User-defined values x/

a.s_addr = inet_addr("1.2.3.4"); union {

ndpi_fill_prefix_v4(&prefix, &a, 32, maxbits); struct {

node = ndpi_patricia_search_best(p_v4, &prefix)); u_int32_t user_value, additional_user_value;
} uv32;

ndpi_patricia_destroy(p_v4, NULL);

u_int64 _t uv64;
return(0); }ou;

} I
typedef struct _ndpi_patricia_node_t {

union ndpi_patricia_node_value_t value;
} ndpi_patricia_node_t;

$ cd nDPI/tests/performance
$./patriciasearch

Patricia tree (IPv4) with 76378 IP prefixes built successfully in 0.05 sec [17.9 MB]
String searched in 0.10 usec

Tested on a DualCore 3,2 GHz Intel Core i3 (2010)

14

Probabilistic Counting: HyperLoglLog [1/3]

* Problem Statement:

- How can | get an estimate (i.e. approximate) of a number
of unigue set elements ? Of course you can do this in
many ways (e.g. a hash table) but at a higher memory
cost.

*Use Cases:

-How many IP addresses has my host contacted in the past
5 minutes?

- How many different IP countries has contacted host X ?

o\WWhat is the host that has issues most different DNS host
query names”

15

Probabilistic Counting: HyperLoglLog [2/3]

*HyperLoglLog is a probabilistic data structure used
to estimate the cardinality of a set.

® [t Improves probabilistic counting by hashing every element,
and counting the amount of Os to the left of such hash.

00
0|1
110
1|1
0|0
0 1
110
1|1

HyperLoglLog Paper: http://algo.inria.fr/flajolet/Publications/FIFuGaMeQ7.pdf

nto p FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI 16

Probabilistic Counting: HyperLoglLog [3/3]

struct ndpi_hll hll_contacted_hosts, hll_contacted_countries;

® Usage asset(ndpi_hll_init(&h1l1_contacted_hosts, 8 /x i x/) == 0);

asset(ndpi_hl1_init(&h11_contacted_contries, 8 /x i x/) == 0);

ndpi_h1ll_add(&h1l_contacted_countries, country, strlen(country));

ndpi_h11_add(&h1ll_contacted_hosts, hostname, strlen(hostname)); / Estimate

num_contacted_hosts = ndpi_h11_count(&h1l_contacted_hosts);
num_contacted_countries = ndpi_hll_count(&h11_countries_contacts);

ndpi_h11_destroy(&hll_contacted_hosts);
ndpi_h1ll_destroy(&h11l_contacted_countries);

*Memory and Cardinality Error

StdError = 1.04/sqrt(271)

[i: 4] 16 bytes [StdError: 26%
[i: 5] 32 bytes [StdError: 18.4%
[i: 6] 64 bytes [StdError: 13
[i: 7] 128 bytes [StdError: 9.

[i: 8] 256 bytes [StdError:

[i: 9] 512 bytes [StdError:

[i: 10] 1024 bytes [StdError:
[i: 11] 2048 bytes [StdError:
[i: 12] 4096 bytes [StdError:
[i: 13] 8192 bytes [StdError:
[i: 14] 16384 bytes [StdError:
[i: 15] 32768 bytes [StdError:
[i: 16] 65536 bytes [StdError:
[i: 17] 131072 bytes [StdError:
[i: 18] 262144 bytes [StdError:
[i: 19] 524288 bytes [StdError:

OO0 RRLRNWRARIOCTORERLN
RPNNRARUOROWNOUN -
B O RN U Q% o° Ul o° o o°

o° d° o o° o° o°

o°

Anomaly Detection [1/10]

* Anomaly: an observation which deviates so much
from other observations as to arouse suspicions that
it was generated by a different mechanism.

nto p FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI 18

Anomaly Detection [2/10]

*Finding anomalies is manyfold:

aim
/ Unwanted Data Data Cleaning

Outliers Meaning

\ aim |
Event of interest { Analyzing the }

outlier itself

Anomaly Detection [3/10]

* Some definitions:
o Series: an ordered sequence of numbers.
-Order: the index of a number in the series.
o TImeseries: a series of data points in time order.

-Observation: the numeric value observed (in reality) at a
specified time.

o Forecast: estimation of an expected value (that we don’t know

yet) at a specific time.

o Forecast Error: positive/negative difference of the observation
with respect to the forecast. Usually the error is reported as
square (SSE) i.e. the sum of squared errors of a series
SUM((observation; - forecasti) A2)

20

Anomaly Detection [4/10]

* A time series is stationary when its statistical properties (e.qg.
mean and variance) do not change overtime, i.e. if they have
no trend or seasonality.

»Counters are not stationaries, gauges are. Solution: store
counters as value difference (observation(t) -
observation(t-1)) rather than absolute values.

*Goal: Given a timeseries, we want to find anomalies by
detecting those observations that fall outside of the expected
ow/high value forecast.

*Note: this techniqgue complements static low/high threshold
that are still recommended to have.

21

Anomaly Detection [5/10]

*In summary we need to implement a system that
forecasts the next value and produces alerts.

Observations End

— Series Prediction Low Band — High Band

190 Predictions
120

" Ly

0

40

80

Qe Observationg = >

nto p FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI 20

Anomaly Detection [6/10]

*NDPI implements three “smoothing” functions for data
forecast:

- Single exponential smoothing: value
ble exponential smoothing: value + trend

O

O

Dou

rp

e exponentia

smoothing (Holt-Winters): value +

trend + seasonality.

- Notes:
*When a series is repetitive at regular intervals, it is

defined seasonal.

* Season Length: the number of data points in a season.

23

Anomaly Detection [7/10]

 Definitions:
oA : SMoothing factor
o(3: Trend factor
oy: Seasonal smoothing factor

*All values are in 0..1 range: close to 1 means that recent
values are more important than past values, close to O means
that past values are more important than more recent ones.

- Single exponential smoothing: a
o Double exponential smoothing: a, and [3
o Triple exponential smoothing: a, B, and vy

24

Anomaly Detection [8/10

* Exponential Smoothing API

/* Single Exponential Smoothing [60 bytes] x/

(LYY LM (struct ndpi_ses_struct xses, double alpha, float significance);
(CHF YL OIREINE (struct ndpi_ses_struct *ses, const u_int64_t _value, double xforecast, double *xconfidence_band);
void LI TIRFR4FN | (double xvalues, u_int32_t num_values, float xret_alpha);

/% kkskkokskkkokskkkokskkkokskkkkkokkkkkkkk *k/

/* Double Exponential Smoothing [80 bytes] x/

int QGIFECISIENERE(struct ndpi_des_struct xdes, double alpha, double beta, float significance);

int ([EELLIREINE (struct ndpi_des_struct xdes, const u_int64_t _value, double *xforecast, double xconfidence_band);
void [UIFMGEIIRER4$N]:|(double *xvalues, u_int32_t num_values, float xret_alpha, float xret_beta);

/% kskskkokskkkskskkkskokskkokkkkskkkkkkkkkk xk/

/* Triple Exponential Smoothing (Holt-Winters) [172 bytes] %/
int [PTEECETIN(struct ndpi_hw_struct *hw, u_intl6_t num_periods, u_int8_t additive_seeasonal,
double alpha, double beta, double gamma, float significance);

void [GIFEVREEE(struct ndpi_hw_struct xhw);
int [LJOMGITECLCIRELNE (struct ndpi_hw_struct xhw, const u_int64_t value, double xforecast, double *xconfidence_band);

* Note

o The process of finding the best value for aand 3 is
named fitting.

Anomaly Detection [9/10

struct ndpi_des_struct des; u_int i, num = sizeof(v) / sizeof(double);
u_int8_t trace = 0; float alpha = 0.9, beta = 0.5;
double v[] = { FILE xfd = fopen("/tmp/des_result.csv", "w");
31.908466339111,
87.339714050293, assert(ndpi_des_init(&des, alpha, beta, 0.05) == 0);
173.47660827637,
213.92568969727, if(trace) {
223.32124328613, printf("\nDouble Exponential Smoothing [alpha: %.1f] [beta: %.1f]\n", alpha, beta);
230.60134887695,
238.09457397461, if(fd)
245.8137512207, fprintf(fd, "index;value;prediction;lower;upper;anomaly\n");
251.09228515625, ¥
251.09228515625,
259.21997070312, for(i=0; i<num; i++) {
261.98754882812, double prediction, confidence_band;
264.78540039062, double lower, upper;
264.78540039062, int rc = ndpi_des_add_value(&des, vI[i]l, &prediction, &confidence_band);

270.47451782227,
173.3671875,

288.34222412109,
288.34222412109,
304.24795532227,
304.24795532227,
350.92227172852,
384.54431152344,
423.25942993164,
439.43322753906,
445.05981445312,
445.05981445312,
445.05981445312,
445.05981445312

r = prediction - confidence_band, upper = prediction + confidence_band;

if(trace) {
printf("%2u)\t%12.3f\t%.3f\t%12.3f\t%12.3f\t %s [%.3fl\n", i, vI[i], prediction, lower, upper,
((rc == 0) || ((v[i] >= lower) && (v[i] <= upper))) ? "OK"™ : "ANOMALY",
confidence_band);

if(fd)
fprintf(fd, "%u;%.0f;%.0f;%.0f;%.0f;%s\n",
i, vI[il, prediction, lower, upper,
((rc == 0) || ((v[i] >= lower) && (v[i] <= upper))) ? "OK" : "ANOMALY");
¥
}

if(fd) fclose(fd);
ndpi_des_fitting(v, num, &alpha, &beta); /* Compute the best alpha/beta x/
Return code

0 Too early: we're still in the learning phase.
1 Normal processing: forecast and confidence_band are meaningful

Anomaly Detection [10/10

Double Exponential Smoothing [alpha: 0.9][beta: 0.5]

Index Value Prediction Upper Lower

0) 31.908 31.000 31.000 31.000 LEARNING [0.000]
1) 87.340 81.400 73.637 89.163 0K [7.763]

2) 173.477 166.360 156.529 176.191 OK [9.831]

3) 213.926 213.844 205.290 222.398 0K [8.554]

4) 223.321 227.213 218.717 235.709 OK [8.496]

5) 230.601 232.954 224.846 241.062 0K [8.108]

6) 238.095 239.399 231.821 246.976 OK [7.578]

7) 245.814 245.714 238.608 252.819 0K [7.106]

8) 251.092 251.424 244.719 258.129 0K [6.705]

9) 251.092 251.804 245.424 258.185 0K [6.380]
10) 259.220 258.680 252.594 264.767 OK [6.086]
11) 261.988 261.312 255.482 267.142 0K [5.830]

12) 264.785 264.135 258.533 269.736 0K [5.602]

13) 264.785 264.356 258.955 269.757 OK [5.401]

14) 270.475 269.618 264.397 274.840 0K [5.222]

15) 173.367 183.016 175.969 190.063 ANOMALY [7.047]
16) 288.342 273.349 263.588 283.109 ANOMALY [9.760]
17) 288.342 288.975 279.479 298.471 0K [9.496]

18) 304.248 304.499 295,253 313.744 0K [9.246]

19) 304.248 305.827 296.780 314.874 0K [9.047]
20) 350.922 346.538 337.585 355.490 0K [8.952]
21) 384.544 382.767 374.005 391.528 0K [8.762]
22) 423.259 422.045 413.467 430.623 0K [8.578]
23) 439.433 440.802 432.374 449,231 OK [8.428]
24 445,060 447.267 438.961 455,573 0K [8.306]

)

) 445.060 446.893 438.717 455.070 OK [8.177]
26) 445.060 446.004 437.971 454,037 0K [8.033]

) 445.060 445.463 437.573 453,353 0K [7.890]

Data Comparison: Binning [1/5]

*Data binning is a technique that allows data to be classified In
a small number of “bins”, that in essence is a vector of positive
numbers where each bin value contains the number of
observations.

*Bins allow data to be classified using a small set of intervals
instead of individual values that can lead to observation errors.

*Data is classified by
o defining the bin number
oadding data to the individual bins

onormalising the data so that bins with different number of
elements can still be compared.

28

Data Comparison: Binning [2/5]

*Bins do not store the data order (i.e.
individual events happened) but |

*Example: if you want to compare two hosts if they
use similar protocols you can create a set of bins

(e.g. 256 bins as't

recognisec

e NLU

oy ND

Pl) ar

the bin-id that correspo

mber of pro

how the

just the data.

'0COIls

d for each new flow increase

nds to the p

rotocol. Then

you can compare bins for equality to see what hosts

are similar.

Data Comparison: Binning [3/5]

*Bins are an efficient way of storing observations but we
need to find a way to compare them to find similarities
(e.g. two hosts with the same behaviour).

*Use Cases:

oCompare all hosts timeseries to find hosts that have a
similar behaviour.

oCompare two initial connection bytes sequence to see if
they are similar.

o FInd hosts with the same packet size distribution. Note:
packets lengths can be grouped in 6 bins of size <= 64
bytes, 65-128, 129-256, 257-512, 513-1024, 1025+.

30

Data Comparison: Binning

void NI IR AEIS R (rrd_file stats *rrd, u_int num_rrds) {
u_int i, j, num_similar_rrds = 0, num_potentially_zero_equal = 0;

for(i=0; i<num_rrds; i++) {
for(j=i+1; j<num_rrds; j++) {
/*
Average is the circle center, and stddev is the radius
if circles touch each other then there is a chance that
the two rrds are similar
*/

if((rrd[i].average == 0) && (rrd[i].average == rrd[j].average)) {
if(!skip_zero)
printf("%ss [%.1f/%.1f] - %s [%.1f/%.1f] are alike\n",
rrd[i].path, rrd[i].average, rrd[i].stddev,
rrd[j].path, rrd[j]l.average, rrd[j].stddev);

num_potentially_zero_equal++;
} else if(circles_touch(rrd[i].average, rrd[i].stddev, rrd[j].average, rrd[j].stddev)
) {
float similarity = ndpi_bin_similarity(&rrd[i].b, &rrd[j]l.b, @, similarity_threshold);

if((similarity >= 0) && (similarity < similarity_threshold)) {
if(verbose)
printf("ss [%.1f/%.1f] - %s [%.1f/%.1f] are %s [%.1f]\n",
rrd[i] .path, rrd[i].average, rrd[i].stddev,
rrd[j]l.path, rrd[j]l.average, rrd[j].stddev,
(similarity == @) ? "alike" : "similar",
similarity
);

num_similar_rrds++;
}
h
}
¥

printf("Found %u (%.3f %%) similar RRDs / %u zero alike RRDs [num_rrds: %ul\n",
num_similar_rrds,
(num_similar_rrds*100.)/(float) (num_rrdsxnum_rrds),
num_potentially_zero_equal,
num_rrds);

https://github.com/ntop/nDPI/blob/dev/rrdtool/rrd_similarity.c

4/5

Data Comparison: Binning [5/5

L R ANy o AR 20 0] 100 | z00m | 350=] Q Search P =
S % SNMP Devices | A Interfaces 818 <o A\ N
@
s ® Network Interfaces Traffic Similarity
A 10 ~
Alerts
SNMP Device A Interface Index A Average TrafficA SNMP Device B Interface Index B Average Traffic B Similarity Scorev
swStorageAccessB14-4 2100867 (GigabitEthernet 1/30) 722.11 bit/s swStorageAccessB14-4 2101507 (GigabitEthernet 1/30) 72211 bit/s 100.0
swStorageAccessB14-4 2101251 722.22 bit/s swStorageAccessB14-4 2101123 722.22 bit/s 100.0
swOobManagementB5-1 12 (12) 1.39 kbit/s swOobManagementB5-1 13 (12) 1.39 kbit/s 99.0
swNetworkEdge1-2 2100996 (TenGigabitEthernet 1/31) 7.56 kbit/s swNetworkEdge1-2 2101124 (TenGigabitEthernet 1/31) 7.56 kbit/s 98.6
swStorageAccessB14-4 2100611 81.33 kbit/s swStorageAccessB14-4 2100739 81.33 kbit/s 98.3
interface swStorageAccessB14-4 2102531 81.33 kbit/s swStorageAccessB14-4 2102659 81.33 kbit/s 98.3
Sexgs ' swOobManagementB5-2 12 (12) 1.39 kbit/s swOobManagementB5-2 13 (12) 1.39 kbit/s 98.0
S swStorageAccessB14-4 2101379 722.33 bit/s swStorageAccessB14-4 2101123 722.22 bit/s 97.8
Bl swStorageAccessB4-1 2099331 (GigabitEthernet 1/18) 716.44 bit/s swStorageAccessB4-1 2099459 (GigabitEthernet 1/18) 716.56 bit/s 97.8
swStorageAccessB14-4 2100867 722.11 bit/s swStorageAccessB14-4 2101635 722.44 bit/s 97.8

Showing 1 to 10 of 1394 rows

« < . 2 3 4 5 > »

FOSDEM 2022 - ntop.org https://github.com/ntop/nDPI

Additional nDPI Features

-Streammg Data Analysis

struct < ndpi alloc data analysis u_lnilﬁ_i _max_series_len);
void ndp1 1n1t _data ana1y51s(struct nalyze_str u_intl6_t _max_series_len);
void ndp1_free_data_ana1y51s(struct n i nalyze_str *d, u_int8_t free_pointer);
void (L[F-HRE G LN (struct ndpi_analyze_struct *d);

i xs, const u_int32_t value);

float . A B =(struct ndpi_analyze_struct *s),
float [FMCEYCIANLOITIRGOEY (struct ndpi_analyze_struct xs)

/* All data x/

float JLIFMCEYEREVEELE (struct ndpi_analyze_struct xs);
float [EGEYCI-Nikdael)(Sstruct n _dp__a_a_y_g_siﬁug_ *S) ;
float (LIFEGEYCIREISENL- (struct ndpi_analyze_struct *s);
float [LIFEGEYCIRIGLEY (struct ndpi_analyze struct xs);
u_int32_t QGIFEGEYEIE(struct ndpi_analyze_struct *s);
u_int32_t QUIFEGEYEMEN (struct ndpi_analyze_struct xs)
u_int32 t QLIFEGEYEEIEY((struct ndpl_analyze_sirugi *s
float (L[FMCEYCIE S (u_int32_t sent, u_int32_t rcvd)

* Clustering (Unsupervised Machine Learning)

int (LRI IS (struct ndpi_bin xbins, u_intl6_t num_bins,

u_int8_t num_clusters, u_intl6_t xcluster_ids,
struct ndpi_bin *xcentroids);

 Data Serialisation, Jitter/Entropy.....

Finally, Some Good News

*Recently Google awarded nDPI.

*(As soon as we receive the payment) We want to
invest this money in NDPI| development.

* Those interested to contribute to nDPI (being paid),
are encouraged to contact us.

patch-rewards@google.com
Re: Security Subsidies Submission 57: nDPI
To: Wa Cc:

Congratulations, the panel has decided on a reward of $5,000 for your submission. Our payments team at p2p-
vrp @google.com will be reaching out to you shortly to complete payment.

Best,

Security Subsidies Team

34

https://githulb.com/ntop/nDPI

4 Noiyabonoa
aaaaaaaa d d ﬂ kﬁ mi'?j.ﬁ,gmlesekkugedenm "
illan MEKE blagodaram S0 oty e g

lh k g[aCIaS_._.BsaﬂtE[gaié
n..em it =M0OCHCNAKKErAM S

h Ieal

[W
Q:
CBQ:

hvala
= i

nanni m

nandin O
hayanalaa L <

e = O\

U‘] dankon I

enkos|
mamnun

. sn nd kuu = chnmaxalnulmun racies 3U|03Y= ﬂ I, alhh mallh a al

= lanemm
£= nausluki lﬁhlll&i -3 fiolgh Shanyavadagaly w 3 ki = MEPCK

o —
RTE NATAY = } i)} L] L } XIEXI& =
5<
W

:. mm

ntop

