FOSDEM’22
February 5th, 2022
Online Event

Monitoring and Debugging

Simon Kuenzer
CTO at Unikraft UG (haftungsbeschréankt)
Senior Researcher at NEC Laboratories Europe GmbH

simon@unikraft.io

Dr.-Ing. Marc Rittinghaus
Head of Engineering at Unikraft UG (haftungsbeschréankt)
Post-Doc and Researcher at KIT

marc@unikraft.io

mailto:simon@unikraft.io
mailto:marc@unikraft.io

Unikraft Unikernel

Specialized
Unikernel

Platform (e.g., hypervisor, bare-metal)

m One application - Flat and single address space

m Single monolithic binary with only necessary kernel components

m Advantages from specialization
- Performance and efficiency
- Small TCB and memory footprint
- Fast boot times

5. February 2022 Debugging and Monitoring in Unikraft
Simon Kuenzer, Marc Rittinghaus

Design Principles

m Specialization as main driving design principle
- Highly customizable: KPI-driven specialization

m Philosophy: “Everything is a (micro-)library”
- Decomposed OS primitives
m Schedulers, memory allocators, VFS, network stacks, ...
- Architectures, platform support, and drivers
m Virtualization environments, bare-metal
- Application interfaces
m POSIX, Linux system call ABI, language runtimes

m Widespread targets
- Microservices, FaaS, NFV, Edge Computing, (Industrial) loT and automotive, ...

5. February 2022 Debugging and Monitoring in Unikraft
Simon Kuenzer, Marc Rittinghaus

The Unikraft Library Stack

application
[] []

O & v v

Ll .
Q0 > musl newlib
o<
e —

= r

> ll-shi
w *sysca -S |m*
7O =
o< ; .
a5 [posix-fdtab][posm—process] “es [pthread]

5, '

_ posix-socket]
P Tl
> |2 =
= - %)
2; = |2|| € SIS8llell D] |5 [« 2 | e Slo
o - E - — o L %)
5" =B |N R AR R e
2 1818|2128 |Ic|2EzE|8
© 35|l 2 FEAREREN 2R
-}
v S0 18 1= (ERE
W — 2 —J
s [———— — Ve T
¥
o |S — — = ¥ 7
Quw |2 (Cvirtio-net] [virtio-block]| | % [netfront) (blockfront]
'5 ! (clock J{ memregion | [clock | “memregion]
(a
5. February 2022 Debugging and Monitoring in Unikraft

Simon Kuenzer, Marc Rittinghaus

Monitoring and Debugging Features

SeaBIOS (version rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org)
Booting from ROM...

mount_testsuite- test_multimount
. deEbug expected "k s _IRWXU)" to be O but was © FAILED
X ed t , "/sys", "ramfs", @, NULL)" to be © but was @ FAILED
. . expected “mkdi v", S_IRWXU)" to be 0 but was @ FAILED
- Logg I n g/P rl nt Syste m Ex;:\:teu) ("fdev", "devfs", B, NULL) to be @ but was FAILED
Ex;gEtEﬂ ~("/ S_IRWXU)" to be O but was @ FAILED
" ex;::ted “mo "/tmp", "naivefs", 8, NULL)" to be @ but was -1 FAILED
- ASSertIO nS EK;:L‘({-U “mount(tmp", "naivetmpfs", 8, NULL) to not be @ but was PASSED

vfscore_stat_testsuite 2_test_newfile
expected “ret’ be 8 but was -1 FAILED

ret’ to L

- Tracepoints e e e
- GDB Server . Sl . FAILED

m uktest
- Unit Testing

Hello world!
root@92fd4e17b166: /usr/src/unikraft/apps/helloworld# []

Flame Graph Search

m ukstore
- Directory of library getters and setters

netfrontif_transmit

tep_input

m ubsan e

— Detect run-time memory bugs

m Uniprof (tool)
Performance analysis with stack snapshots

5. February 2022 Debugging and Monitoring in Unikraft 5
Simon Kuenzer, Marc Rittinghaus

1

Monitoring with ukstore

Requirements

m Re-use (micro-)library instrumentation
m ukstore Is optional: Remove unneeded instrumentation at compile-time
m Allow retrieving of data and setting of values

m Getter/Setter interface defined by library
- Name and data type (e.g., int, string)

m Pull-oriented design
- Minimal overhead: Compute/parse only when requested

m Enable integration into common visualization/alerting systems
- e.g., Prometheus, Grafana

5. February 2022 Debugging and Monitoring in Unikraft
Simon Kuenzer, Marc Rittinghaus

Architecture

Micro-libraries Directory Access backend

N=N1)

ukalloc

Pseudo FS

uknetdev

Shell
command(s)

Provide entries Look-up entries

Call getter/setter
<

5. February 2022 Debugging and Monitoring in Unikraft
Simon Kuenzer, Marc Rittinghaus

An ukstore entry

m Name, data type, and function pointer to getter and/or setter

m Static entries (always available)
- Compile-time, no run-time registration
/[Entry]

Examples:
/interfaces_count (r-)

/request_shutdown (-w)

m Dynamic entries
- Created and removed at runtime
- Entries per instance/object (e.g., thread, allocator, network interface)
/[Object ID]/[Entry]

Examples:
/1/sent_bytes (r-)

/0/avail_mem (r-)

5. February 2022 Debugging and Monitoring in Unikraft
Simon Kuenzer, Marc Rittinghaus

Example: Grafana/Prometheus with ukstore

Bytes per Packet Sent

11:22
Packet size (bytes)

Packet Transmit vs. Receive Rate

i
18

\ 1 1 l

| |
|| ||||| | ||II
.—|| J4.| IA |_|

6.88K
11:22

== Active allocations

k A]

(b) f | H.IJ_ . ;U,,';“ VI\I,-"'”..\L " al | 'l‘l. A ﬂ
I’“ | -"\' II"||-| ||ll|-_m ” |

SN (o

4 e My

3

11:22 11:24 11:26
== Packets Sent == Packets Received

Transmit/Receive Errors

-‘r-;’ aanial

i

h rrt
|

II|‘~II L,‘"‘\L‘ 1 [, |k|-| “ * [-’,_ 8 IIIJI "“ "ﬂu -
i M |. J"n"'l""‘lf"ﬂm .-| \ l[L | i.r.u.{ﬂ '..Ln lk"\wﬁ 1‘1‘\" '|l"“-i' l’” ! '.,\H ‘T

'-‘"’Ihl\]l‘f"l'\;'hl.f Ty T .'nll.’_\r""_'_ﬂ i |h-'|\ "_'Tlh"di".l'.rl'.ll‘l‘ DN

11:28 11:30 : : - 1:22 11:24 11:26
== {iface="en0", instance="192.168.0.188:9100" job="demo"}

Allocation errors

5. February 2022

Debugging and Monitoring in Unikraft
Simon Kuenzer, Marc Rittinghaus

In Use Memory

Memory in use

Current State and Future Work

m Currenﬂy upstreaming ukstore lib/ukstore: Introduce the ukstore library #202

310pen) craciunoiuc wants to merge 3 commits into unikraft:staging from craciunoiuc:ukstore_fixed_tree (5

m Next

- Provide set of initial instrumentation
Memory utilization: ukalloc
CPU utilization: uksched
Network utilization: Iwip, uknetdev
Storage utilization: vfscore , ukblkdev

- Access backends
m e.g., Prometheus/REST, pseudo-FS, shell

5. February 2022 Debugging and Monitoring in Unikraft 11
Simon Kuenzer, Marc Rittinghaus

https://github.com/unikraft/unikraft/pull/202

2

New Debugging Features in Unikraft (ukdebug)

New Debugging Features in Unikraft

Integrated GDB Stub

Uniform Crash Screen

.100707] : Unikraft crash - Dione (0.6.0~2925462)

.101195] : RIP: 0008:000000000010e8e5

.101461] : RSP: 0010:000000001ffdfe20 EFLAGS: 00000002 ORIG_RAX: 0000000000000000
.101965] : RAX: 000000001ffdfe20 RBX: ©0000000000000000 RCX:000000001ffdfeed
.102428] : RDX: 00000000000000cO RSI: 0000000000000038 RDI:0000000000000010
.102887] : RBP: 000000001ffdff80 RO8: 0000000000000000 RO9 :00000000001295F0
.103355] : R10: 0000000000000000 R11l: 0000V R12:000000000000VV00
.103833] : R13: 0000000000000000 R14: 0000000000000 R15:0000000000000000
.104329] : Stack:

.105118] : 00000PP1ffdfe20 ©O 00 00 0O 00 00 00 00

.105485] . 000000001ffdfe28 ©O 00 00 00 00 0O 00 00

.105868] . 000000001ffdfe30 ©O 00 00 00 00 0O 00 00

.106245] : 00000PPP1ffdfe38 0O 00 00 00 00 00 00 00

.106630] : 000000001 ffdfed0 0O 00 00 00 00 00

.107006] : 00000000l ffdfed8 80 ff fd 1f 00 00

.107391] : 00000RLO1ffdfe50 ©O 00 00 0O 0O 00

.107770] : 000000001 ffdfe58 0O 00 00 00 00 00

.108177] : Call Trace:

.108380] : [0000000000R10e8e5] ukplat_entry+5c4

.108941] : [000000000010e321] ukplat_entry_argp+8b

.109301] : [00000000001082c7] _libkvmplat_entry2+29

.109623] : [0000000000106465] _libkvmplat newstack+f

.109965] : Could not initialize the scheduler

.110273] : [libkvmplat] <shutdown.c @ 35> Unikraft halted

5. February 2022 Debugging and Monitoring in Unikraft 13
Simon Kuenzer, Marc Rittinghaus

GDB Debugger Support

m QEMU/KVM provides GDB debugger stub
- Source-level guest debugging
- Single-stepping, breakpoints, etc.

m BUT:

- No debugging support on other platforms
(e.g., Hyper-V, bare metal, cloud)

- Semantic gap (e.g., no thread-level debugging)

- No debugger integration in crash handling
(e.qg., failed asserts, kernel crash)

Want: Guest-level debugger support
GDB is obvious choice

5. February 2022 Debugging and Monitoring in Unikraft
Simon Kuenzer, Marc Rittinghaus

- Unikraft Guest

; GDB

(Connection

QEMU/KVM

Serial /
Socket

GDB

14

Needed Components

m Communication channel
- Should be available early in the boot phase

Connection .

m GDB stub
- Processing of GDB commands

m Means to react to debugging events
- Architectural events (traps, breakpoints)

m Debugger invocation in error conditions
- Failed assert, kernel crash

m But: Adhere to Unikraft philosophy
- Implement as optional / replaceable micro-library

5. February 2022 Debugging and Monitoring in Unikraft
Simon Kuenzer, Marc Rittinghaus

Communication Channel

m Unikraft has very short boot phase
- System far into the boot when network is available

m Serial device
- No requirements on other subsystems (e.g., memory allocator)
- Available on most platforms
- Quick to setup
- Simple to use

m But: Already used for kernel messages
- Share with serial console
- Dedicate to debugger

5. February 2022 Debugging and Monitoring in Unikraft
Simon Kuenzer, Marc Rittinghaus

GDB Stub - Protocol Handling

m Responsible for communication with GDB

acket-data#checksum
- Packet-based protocol e

m Packet Data Read 8 bytes at memory address 60000000
- Command + parameters $m0000V000, 08#checksum
- Payload encoded depending on Read CPU register state
packet type (e.g., as hex string) $gitchecksum —

Ll $52ABO31F

m Checksum

- Two-digit hexadecimal sum of all characters EBX

iIn packet data modulo 256

m GDB stub is mostly parsing of packets
- 70% (~1000 LoC) for protocol handling
- 10 commands needed for basic operation

5. February 2022 Debugging and Monitoring in Unikraft 17
Simon Kuenzer, Marc Rittinghaus

GDB Stub — Architecture Integration

m Responsibilities
- Save and restore CPU context
- Read and write memory
- Set up single-stepping (i.e., set trace flag in EFLAGS register)
- Implement trap handlers (e.g., breakpoint)

m Setting / unsetting of breakpoints done by GDB client ©
- Replace instructions with debug break (memory read/write commands)
- BUT: HW breakpoints (watchpoints) need support by stub (not yet)

m Unikraft supports: x86-64 (450 LoC) and ARM64 (250 LoC)

5. February 2022 Debugging and Monitoring in Unikraft 18
Simon Kuenzer, Marc Rittinghaus

Trap Handling

m Debugger must react to traps - Unikraft Guest
(e.g., breakpoint, single step)

debug trap(..) {
gdb_stub();

m Could manually invoke debugger in }

trap handling code Trap handlers - pagefault_trap(..) {

gdb_stub();
CRASH();

m BUT: Would create dependency in
platform to optional GDB stub library

Platform

Better: Extensible trap interface support

code

5. February 2022 Debugging and Monitoring in Unikraft 19
Simon Kuenzer, Marc Rittinghaus

Extensible Trap Interface

m Event-based interface ' Unikraft Guest

- Platform defines and raises events

debug_trap(..) {
(uk_raise event(TRAP_DBG, ctx))

m Any library can define handlers

J

- Link-time handler registration
- Handler priorities

A
\ _ unhandled

EVENT_HANDLER(TRAP_DBG, gdb dbg trap);

Trap Events
TRAP_DBG ™ TRAP_PF

" Crash — -» GDB Stub

Platform
support
code
KVM | KVM
b x86_64 F---- * ARM6G4 £-----
5. February 2022 Debugging and Monitoring in Unikraft 20

Simon Kuenzer, Marc Rittinghaus

GDB Stub

Problem: GDB might access invalid memory addresses
- Tries to interpret integers as pointers (e.g., in ASM TUI mode)
- Tries to read from invalid pointer (e.g., during backtrace)
- User command leads to unintentional invalid memory access

GDB stub may crash system when performing illegal access

Need way to catch invalid memory accesses

5. February 2022 Debugging and Monitoring in Unikraft

Simon Kuenzer, Marc Rittinghaus

21

Non-Faulting Memory Accesses

m Want: Try memory access and return error on illegal access (i.e., no crash)

- Flexible approach: Just try and catch illegal memory accesses

uk_memcpy nofault(*dst,
nf _copy loop(dst, src, len, fault);
len;
fault:
-1;

}

m Register low-priority pagefault handler
- Maps trapped IP to entry in exception table
- Each nofault()-call receives entry in table
- Entry provides continuation IP for exception handler

5. February 2022 Debugging and Monitoring in Unikraft
Simon Kuenzer, Marc Rittinghaus

22

Overview

GDB

ASSERTOLY b

CRASH()

\ | unhandled

Platform Serial
support MI

code

Trap Events
TRAP_DBG ™ TRAP_PF

R

Traps

“Memory Access

0101(Serial Connection @101 <« 1 Debug Library 1 Nofault Library

o)
=2
®

Exception Handler

5. February 2022 Debugging and Monitoring in Unikraft
Simon Kuenzer, Marc Rittinghaus

23

Uniform Crash Experience

m Previously: Every architecture had its own crash handling code
- Dumping registers, halting system, etc.

m Want: Uniform experience on all architectures
- Invoke debugger if available

.100707] : Unikraft crash - Dione (0.6.0~2925462))(2363'63‘1
.101195] : RIP: 0008:000000000010e8e5

.101461] : RSP: 0010:000000001ffdfe20 EFLAGS: 00000002 ORIG_RAX: 0000000000000000
.101965] : RAX: 000000001ffdfe20 RBX: 0000000000000000 RCX:000000001ffdfeec0d
.102428] : RDX: 00000000000000cO RSI: 0000000000000038 RDI:0000000000000010
.102887] : RBP: 000000001ffdff80 RO8: 0000000000000 RO9:00000000001295F0
.103355] : R10: 0000000000000 R11l: 00VVOOVVVOVVVVO R12:0000000000000000
IEREE] : R13: 0000000000000000 R14: 000000V R15:0000000000000000
.104329] : Stack:

.105118] : 000000PP1ffdfe20 0O 00 0O 0O 00 0O 00 00

.105485] : 000000001ffdfe28 ©O 00 00 00 00 00 00 00O

.105868] : 000000001ffdfe30 ©O 00 00 00 00 00 00 00

.106245] : 000000PP1ffdfe38 0O 00 0O 0O 00 OO 00 00

.106630] : 000000001ffdfed0 0O 00 00 00 00 00 00 00O

.107006] : 000000001 ffdfed48 80 ff fd 1f 00 00 00

.107391] : 000000PP1ffdfe50 ©O 00 0O 0O 00 0O 00 00

.107770] : 000000001ffdfe58 0O 00 00 00 00 00 00 00

.108177] : Call Trace:

.108380] : [000000000010e8e5] ukplat_entry+5c4

.108941] : [000000000010e321] ukplat_entry_argp+8b

.109301] : [00000000001082c7] _libkvmplat_entry2+29

.109623] : [0000000000106465] _libkvmplat_ newstack+f

.109965] : Could not initialize the scheduler

.110273] : [libkvmplat] <shutdown.c @ 35> Unikraft halted

.011181] : Unikraft crash - Dione (0.6.0~2925462)
.011750] : PC : 0000000040107b04

.011980] : LR : 0000000040107ab4

.012209] : SP : 00000LRO5ffffdco

.012418] : PSTATE: 200003c5

.012713] : X0 : 000000005ffffddo X1 : 0000000008000100

.017126] : X28: 0000000000000000 X29: 0VVVVVVOSTfffeed
.017508] : Stack:

.018804] : 000000005ffffdcd e0 fd ff 5f 00 00 00 00
.019168] . 00000005ffffdc8 ©0 00 00 00 00 00 00 00
.019549] . 000000005ffffdde do fd ff 5f 00 00 00 00
.019939] . 000000005ffffdd8 ©0 01 00 08 00 00 00 00
.020312] : 00000005 ffffde®d ©O0 01 00 00 00 00 00 00
.020679] . 000000005ffffde8 28 cO 13 40 00 00 00 00
.021022] : 000000005ffffdfe cc fd ff 5f 00 00 00 00
.021408] . 000000005ffffdf8 8c fe ff 5f 00 00 00 00
.021819] : Call Trace:

.022007] : [00000P0P0040107b04] ukplat entry+424
.022724] : [00000000401076€0] ukplat_entry_argp+c4
.023039] : [oo0oo00004010450c] _libkvmplat_entry2+3c
.0923333] : [00000PP0040102080] _libkvmplat_ newstack+10
.023711] : Could not initialize the scheduler

.024009] : [libkvmplat] <shutdown.c @ 35> Unikraft halted

5. February 2022 Debugging and Monitoring in Unikraft 24
Simon Kuenzer, Marc Rittinghaus

Uniform Crash Experience

[| SymbOI reSOIUtlon [0.108177] CRIT: Call Trace:

[0.108380] CRIT: [00P0OAPOGR10e8e5] ukplat_entry+5c4

[0.108941] CRIT: [000000000010e321] ukplat_entry_argp+8b

— UseS <|P, String>-|ike table [0.109301] CRIT: [00000000001082c7] _libkvmplat_entry2+29

[0.109623] CRIT: [00000RREAA106465] libkvmplat newstack+f
- Link unikernel three times
1. Link without table and extract debug symbols

2. Link with table (might change symbol addresses!). Extract debug symbols again
3. Link with updated table

- APl to resolve symbols at runtime

uk_resolve symbol(uk_symbol *sym);

5. February 2022 Debugging and Monitoring in Unikraft 25
Simon Kuenzer, Marc Rittinghaus

Current State and Future Work

o Currently upstreaming features include/event: Add uk_event for new trap interface #227

T10peny marcrittinghaus wants to merge 2 commits into unikraft:staging from marcrittinghaus:mritting/event L]

) Conversation 12 -o- Commits (2 [l Checks (0 [® Files changed (7

m Next:
- Thread and SMP support
- Hardware watchpoints

- Custom commands
m Crash dump
m Inspect state (IRQ, paging, ...)
- Debugging over network connection

5. February 2022 Debugging and Monitoring in Unikraft 26
Simon Kuenzer, Marc Rittinghaus

3

The Project, the Company

Join us!

Unikraft Summer of Cose: A free and virtual unikemal and brary Oparating Systems Workshop! Resd more

m OSS project me—

HniKraft

Extreme Specialization for
Security and Performance

m Code & Contributing

[| D O C u m e n tatl O n iy ZT::QQ Diun;emels

m Follow uson
- Discord:
- Twitter:
- Linkedin:

Wnikraft Xen

5. February 2022 Debugging and Monitoring in Unikraft 28
Simon Kuenzer, Marc Rittinghaus

T g——|
on T
C_|—|—|
Z
U
>
—
O
Z

https://unikraft.org/
https://github.com/unikraft
http://docs.unikraft.org/
https://bit.ly/UnikraftDiscord
https://twitter.com/unikraftsdk
https://linkedin.com/company/unikraft-sdk

Want to try out Unikraft at your Company?

m Please, contact us!

on Unsplash.com

m Unikraft UG (haftungsbeschrankt)
Im Neuenheimer Feld 582
69120 Heidelberg

Heidelberg Old Town, Photo by Brina Blum

GERMANY
Your app.
At lightspeed.
With 20-50% savings.
jal!
-“-ee “'\
Save your
5. February 2022 Debugging and Monitoring in Unikraft 29

Simon Kuenzer, Marc Rittinghaus

mailto:simon@unikraft.i
mailto:simon@unikraft.io
mailto:felipe@unikraft.io
mailto:alex@unikraft.io
https://unikraft.io/

Thank you!

Unilzraiie

Unikraft UG (haftungsbeschrankt)
Im Neuenheimer Feld 582

69120 Heidelberg

GERMANY

https://unikraft.io

https://unikraft.io/

