
Porting Signal Processing Algorithms to
CuPy for precision measurement

Porting Signal Processing Algorithms to
CuPy for precision measurement

Acknowledgements: D.Cobas, M.Lipinski, M.Sosin, P.Peronnard, T.Gingold, C.Franco, T.Wlostowski (CERN)

2

Outline

Frequency Scanning Interferometry System

 Signal Processing in FSI

CuPy and Signal Processing

3

Outlook

● Butterworth Filter
● Hilbert Transform
● Savitzky-Golay Filter

4

Frequency Scanning Interferometry System

● Frequency scanning interferometry measurement system for
Full Remote Alignment System (FRAS), which can determine
distance from measuring head to target upto micrometer precision
in real time

● Monitoring the position of magnet and crab cavity cold masses
inside their cryostats

● Based on Michelson Interferometry Principle and uses sweeping
laser to identify distance of target system

https://home.cern/news/news/accelerators/aligning-hl-lhc-magnets-interferometry

https://home.cern/news/news/accelerators/aligning-hl-lhc-magnets-interferometry

5

Frequency Scanning Interferometry System

● Based on Michelson Interferometry Principle
and uses sweeping laser to identify distance of
target system

● Reference beam and the beam reflected from
the target are recombined, creating an
interference signal -

 I(t,τ) = A·cos[2π(α τt + f 0 τ)]

A - magnitude of the signal
τ - time delay between signals
α - sweep rate of the laser

6

Frequency Scanning Interferometry System

● Based on Michelson Interferometry Principle
and uses sweeping laser to identify distance of
target system

● Reference beam and the beam reflected from
the target are recombined, creating an
interference signal -

 I(t,τ) = A·cos[2π(α τt + f 0 τ)]

A - magnitude of the signal
τ - time delay between signals
α - sweep rate of the laser

● Distance D is calculated -

𝛥𝜈 - change of the laser frequency during sweep
n -refractive index
c -speed of light
N -number of cycles of the signal measured during the laser
sweep (above equation)

7

Frequency Scanning Interferometry System

● Based on Michelson Interferometry Principle
and uses sweeping laser to identify distance of
target system

● Reference beam and the beam reflected from
the target are recombined, creating an
interference signal -

 I(t,τ) = A·cos[2π(α τt + f 0 τ)]

A - magnitude of the signal
τ - time delay between signals
α - sweep rate of the laser

● Distance D is calculated -

𝛥𝜈 - change of the laser frequency during sweep
n -refractive index
c -speed of light
N -number of cycles of the signal measured during the laser
sweep (above equation) Introduction to Frequency Scanning Interferometry (FSI) systems -

M. Sosin, J. Rutkowski

https://indico.cern.ch/event/831552/contributions/3484597/attachments/1896834/3130203/1_FSI_Introduction_MS.pdf
https://indico.cern.ch/event/831552/contributions/3484597/attachments/1896834/3130203/1_FSI_Introduction_MS.pdf

8

Frequency Scanning Interferometry System

● Multi-Target Frequency Scanning
Interferometry system

I(t,τ) = A 1 ·cos[2π(ατ 1 t + f 0 τ 1)]+ A 2 ·cos[2π(ατ 2 t + f 0 τ 2)...

A1, A2 - magnitude of the signal
τ - time delay between signals
α - sweep rate of the laser

9

Frequency Scanning Interferometry System

● Multi-Target Frequency Scanning
Interferometry system

● Fourier Transform based analysis
to obtain final distance

α – is a sweep rate of the laser (𝛼 = 𝑑𝜈/𝑑𝑡)
n – refractive index of light transmission medium
c – speed of light

10

Frequency Scanning Interferometry System

● FSI interferometer schematic - a) laser delivery and signal analysis b) measurement channels

● Reference Interferometer to identify laser sweep (α)

11

Frequency Scanning Interferometry System

● FSI interferometer schematic - a) laser delivery and signal analysis b) measurement channels

● Reference Interferometer to identify laser sweep (𝛥𝜈) or (α)

For known length L -

𝛥𝜈 - change of the laser frequency during
sweep
n -refractive index
c -speed of light
m -number of cycles of the signal measured
during the laser sweep for length L

becomes,

12

Frequency Scanning Interferometry System

FSI Photodetector ModuleFSI Test Setup

GPU: Nvidia RTX 3060

Outline

Frequency Scanning Interferometry System

 Signal Processing in FSI

CuPy and Signal Processing

13

Outlook

● Butterworth Filter
● Hilbert Transform
● Savitzky-Golay Filter

14

Signal Processing in Frequency Scanning Interferometry

15

Signal Processing in Frequency Scanning Interferometry

16

Signal Processing in Frequency Scanning Interferometry

17

Signal Processing in Frequency Scanning Interferometry

Samples

Outline

Frequency Scanning Interferometry System

 Signal Processing in FSI

CuPy and Signal Processing

18

Outlook

● Butterworth Filter
● Hilbert Transform
● Savitzky-Golay Filter

19

CuPy

● It is an open-source matrix library accelerated with NVIDIA CUDA.

● It uses CUDA-related libraries including cuBLAS, cuDNN, cuRand,
cuSolver, cuSPARSE, cuFFT, and NCCL to make full use of the GPU
architecture

20

CuPy

● It is an open-source matrix library accelerated with NVIDIA CUDA.

● It uses CUDA-related libraries including cuBLAS, cuDNN, cuRand,
cuSolver, cuSPARSE, cuFFT, and NCCL to make full use of the GPU
architecture

https://cupy.dev/

https://cupy.dev/

21

CuPy

● It is an open-source matrix library accelerated with NVIDIA CUDA.

● It uses CUDA-related libraries including cuBLAS, cuDNN, cuRand,
cuSolver, cuSPARSE, cuFFT, and NCCL to make full use of the GPU
architecture

● Provides High performance N-dimensional array computation

● Drop in replacement for Numpy -
https://docs.cupy.dev/en/stable/reference/comparison.html

22

CuPy

● It is an open-source matrix library accelerated with NVIDIA CUDA.

● It uses CUDA-related libraries including cuBLAS, cuDNN, cuRand,
cuSolver, cuSPARSE, cuFFT, and NCCL to make full use of the GPU
architecture

● Provides High performance N-dimensional array computation

● Drop in replacement for Numpy -
https://docs.cupy.dev/en/stable/reference/comparison.html

● Open Source and distributed under MIT License

● Easy to start with and scale and test

● Develop custom Kernels using JIT - NUMBA

https://docs.cupy.dev/en/stable/reference/comparison.html

23

CuPy and Signal Processing Algorithms

Support for some of the Scipy routines is available:

● Discrete Fourier Transform
fft, rfft, ifft, fft2, irfft, fftshift

● Linear Algebra
lu, eigsh, lsqr

● Multidimensional Image processing
gaussian_filter, laplace, convolve, grey_dilation, grey_erosion

● Signal Processing
fftconvolve, correlate, medfit

● Sparse Matrices
…… and many more

https://docs.cupy.dev/en/stable/reference/scipy.html#

24

CuPy and Signal Processing Algorithms

Support for some of the Scipy routines is available:

● Discrete Fourier Transform
fft, rfft, ifft, fft2, irfft, fftshift

● Linear Algebra
lu, eigsh, lsqr

● Multidimensional Image processing
gaussian_filter, laplace, convolve, grey_dilation,
grey_erosion

● Signal Processing
fftconvolve, correlate, medfit

● Sparse Matrices … and many more

https://docs.cupy.dev/en/stable/reference/scipy.html#

● Cusignal - RAPIDS

https://docs.rapids.ai/api/cusignal/stable/api.html

25

CuPy and Signal Processing Algorithms

Considerations while porting to GPU:

1] Check the data format

2] Check number of Device to Host and Host to Device Memory Transactions

3] No recursion functions are present

4] GPU is good if you have large data set to process and have possibility of either
 Data parallelism or Task parallelism

Outline

Frequency Scanning Interferometry System

 Signal Processing in FSI

CuPy and Signal Processing

26

Outlook

● Butterworth Filter
● Hilbert Transform
● Savitzky-Golay Filter

27

Butterworth Filter

● To reduce the background noise and suppress
the interfering signals by removing some
frequencies - filters are used

● The frequency range which is allowed :
passband and the range which is suppressed is
stopband

● Butterworth filter provides maximum flat
response in passband i.e least ripple

● Transfer Function of Butterworth Filter:

= cut-off frequency
N = Order of Filter

28

Butterworth High Pass Filter

29

Butterworth High Pass Filter in CuPy
1] Calculate z,p,k for Lowpass analog prototype

2] Pre-warp frequencies for Digital Filter

3] Convert Lowpass analog prototype to Highpass, wo= cutoff frequency

4] Return digital filter parameters using Bilinear Transformation fs = 2.0*fs

5] Convert to b/a form from z,p,k

warped = 2 * fs * cp.tan(pi * Wn / fs)

z = cp.array([])
m = cp.arange(-N+1, N, 2)
p = -cp.exp(1j * pi * m / (2 * N))
k = 1

z_hp = wo / z
p_hp = wo / p
z_hp = cp.append(z_hp, cp.zeros(degree))
k_hp = k * cp.real(cp.prod(-z) / cp.prod(-p))

z_z = (fs + z) / (fs - z)
p_z = (fs + p) / (fs - p)
z_z = cp.append(z_z, -cp.ones(degree))
k_z = k * cp.real(cp.prod(fs - z) / cp.prod(fs - p))

30

Performance Analysis: Butterworth Filter

1] Calculate filter Transfer Function

2] Apply using lfilter

3] Apply using FFT

nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = butter(order, normal_cutoff, btype='high', analog=False)

data=Reference_cell
ret = lfilter(b, a, data)

delta = np.zeros(np.size(t))
delta[1] = 1;
filter_butter = lfilter(b, a, delta)
filter_butter = cp.array(filter_butter)
filter_fft = cupyx.scipy.fft.fft(filter_butter)
data_fft = cupyx.scipy.fft.fft(data)
res_fft = cp.multiply(data_fft, filter_fft)
res_fft = cp.array(res_fft)
res = cupyx.scipy.fft.irfft(res_fft)

Outline

Frequency Scanning Interferometry System

 Signal Processing in FSI

CuPy and Signal Processing

31

Outlook

● Butterworth Filter
● Hilbert Transform
● Savitzky-Golay Filter

32

Hilbert Transform

● It is useful for calculating instantaneous
attributes of a time series, especially the
amplitude and the frequency.

● The instantaneous amplitude is the
amplitude of the complex Hilbert transform
and the instantaneous frequency is the time
rate of change of the instantaneous phase
angle.

● It returns Analytic Signal ‘x’
x = xr + jxi
xr is the original data
xi and an imaginary part,which contains the
Hilbert transform. The imaginary part is a
version of the original real sequence with a
90° phase shift

33

Hilbert Transform in CuPy

Xf = cupyx.scipy.fft.fft(x, N, axis=axis)
h = cp.zeros(N)

1] Compute Fast Fourier Transform of Real-valued Signal

2] Rotate the Fourier Coefficients to obtain imaginary part
if N % 2 == 0:
 h[0] = h[N // 2] = 1
 h[1:N // 2] = 2
else:
 h[0] = 1
 h[1:(N + 1) // 2] = 2

3] Compute Inverse Fourier Transform to get the Analytic Signal

x = cupyx.scipy.fft.ifft(Xf * h, axis=axis)

4] Calculate Instantaneous Frequency and phase

if x.ndim > 1:
 ind = [cp.newaxis] *
x.ndim
 ind[axis] = slice(None)
 h = h[tuple(ind)]

34

Hilbert Transform

35

Hilbert Transform of Reference Cell Data

def DataLinearize(Tinterval, REF_IFM, plot='false') :

fs= 1/Tinterval
REF_IFM = filterDataButterworthHighpass(REF_IFM, 100000, fs)
t = cp.linspace(0.0, len(REF_IFM)*Tinterval, num=len(REF_IFM))
start=time.time()
analytic_signal = hilbert_gpu(REF_IFM, axis=0)
Time_GPU_HT = time.time() - start
REF_IFM = cp.asnumpy(REF_IFM)

start=time.time()
analytic_signal2 = hilbert(REF_IFM, axis=0)
Time_CPU_HT = time.time() - start
print("Time taken by CPU %s" %(time.time()-start))

phase = cp.angle(analytic_signal)
instantaneous_phase = cp.unwrap(phase, axis=0)
instantaneous_phase = cp.asnumpy(instantaneous_phase)
del phase
del analytic_signal

f_theor = cp.max(instantaneous_phase)/(2*3.14*(Tinterval*len(instantaneous_phase)))
t_simu = cp.array(instantaneous_phase/(2*3.14*f_theor))
t_simu[0] = 0

 t_simu=cp.sort(t_simu)
return t,t_simu,Time_GPU_HT,Time_CPU_HT

36

Performance Analysis: Hilbert Transform

def DataLinearize(Tinterval, REF_IFM, plot='false') :

fs= 1/Tinterval
REF_IFM = filterDataButterworthHighpass(REF_IFM, 100000, fs)
t = cp.linspace(0.0, len(REF_IFM)*Tinterval, num=len(REF_IFM))
start=time.time()
analytic_signal = hilbert_gpu(REF_IFM, axis=0)
Time_GPU_HT = time.time() - start
REF_IFM = cp.asnumpy(REF_IFM)

start=time.time()
analytic_signal2 = hilbert(REF_IFM, axis=0)
Time_CPU_HT = time.time() - start
print("Time taken by CPU %s" %(time.time()-start))

phase = cp.angle(analytic_signal)
instantaneous_phase = cp.unwrap(phase, axis=0)
instantaneous_phase = cp.asnumpy(instantaneous_phase)
del phase
del analytic_signal

f_theor = cp.max(instantaneous_phase)/(2*3.14*(Tinterval*len(instantaneous_phase)))
t_simu = cp.array(instantaneous_phase/(2*3.14*f_theor))
t_simu[0] = 0

 t_simu=cp.sort(t_simu)
return t,t_simu,Time_GPU_HT,Time_CPU_HT

37

Performance Analysis: Hilbert Transform

def DataLinearize(Tinterval, REF_IFM, plot='false') :

fs= 1/Tinterval
REF_IFM = filterDataButterworthHighpass(REF_IFM, 100000, fs)
t = cp.linspace(0.0, len(REF_IFM)*Tinterval, num=len(REF_IFM))
start=time.time()
analytic_signal = hilbert_gpu(REF_IFM, axis=0)
Time_GPU_HT = time.time() - start
REF_IFM = cp.asnumpy(REF_IFM)

start=time.time()
analytic_signal2 = hilbert(REF_IFM, axis=0)
Time_CPU_HT = time.time() - start
print("Time taken by CPU %s" %(time.time()-start))

phase = cp.angle(analytic_signal)
instantaneous_phase = cp.unwrap(phase, axis=0)
instantaneous_phase = cp.asnumpy(instantaneous_phase)
del phase
del analytic_signal

f_theor = cp.max(instantaneous_phase)/(2*3.14*(Tinterval*len(instantaneous_phase)))
t_simu = cp.array(instantaneous_phase/(2*3.14*f_theor))
t_simu[0] = 0

 t_simu=cp.sort(t_simu)
return t,t_simu,Time_GPU_HT,Time_CPU_HT

38

Performance Analysis: Hilbert Transform

Performance of FFT Cupy Kernel in timeline view

Outline

Frequency Scanning Interferometry System

 Signal Processing in FSI

CuPy and Signal Processing

39

Outlook

● Butterworth Filter
● Hilbert Transform
● Savitzky-Golay Filter

40

Savitzky-Golay Filter

● It is a digital filter that can be applied to a set of digital data points for smoothing the data without
distorting the original signal tendency or to calculate the derivative of signal.

● Find least-square fit for each window and replace each data point with coefficient of that polynomial

● But the smoothed output obtained by fitting polynomial to each window is equivalent to convolution
of convolution coefficients(weighting coefficients) with each window/segment

https://en.wikipedia.org/wiki/Digital_filter
https://en.wikipedia.org/wiki/Digital_data
https://en.wikipedia.org/wiki/Smoothing

41

Savitzky-Golay Filter

● It is a digital filter that can be applied to a set of digital data points for smoothing the data without
distorting the original signal tendency or to calculate the derivative of signal.

● Find least-square fit for each window and replace each data point with coefficient of that polynomial

● But the smoothed output obtained by fitting polynomial to each window is equivalent to convolution
of ‘convolution coefficients(weighting coefficients)’ with each window/segment

https://en.wikipedia.org/wiki/Digital_filter
https://en.wikipedia.org/wiki/Digital_data
https://en.wikipedia.org/wiki/Smoothing

42

Savitzky-Golay Filter in CuPy

b = cp.array([[k**i for i in range(order+1)] for k in range(-half_window, half_window+1)])
m = cp.linalg.pinv(b)
m = cp.multiply(m[deriv] , cp.multiply(cp.power(rate,deriv), factorial(deriv)))

1] Precompute the coefficients based on order and window length

2] Pad the signal at the extremes

extr_begin = y[0] - cp.abs(y[1:half_window+1][::-1] - y[0])
extr_end = y[-1] + cp.abs(y[-half_window-1:-1][::-1] - y[-1])
y = cp.concatenate((extr_begin, y, extr_end))

3] Convolve signal with calculated coefficients

result = cp.convolve(m[::-1], y, mode='valid')

43

Applying Savitzky-Golay Filter to Gas Cell Data

44

Applying Savitzky-Golay Filter to Gas Cell Data

Spectrum of Hydrogen Cyanide (HCN) SRM2519a absorption gas
cell -used to track the “true” frequency of the sweeping laser

45

Applying Savitzky-Golay Filter to Gas Cell Data

Gas Cell Spectrum Filtered Gas Cell

46

Applying Savitzky-Golay Filter to Gas Cell Data

Gas Cell Spectrum

47

Performance Analysis: Savitzky-Golay Filter
start=time.time()
savg_cpu = scipy.signal.savgol_filter(FilteredGasCell, 201, 2)
Time_CPU_SG=time.time()-start

FilteredGasCell = cp.array(FilteredGasCell)
start=time.time()
FilteredGasCell = savgol_filter_gpu(FilteredGasCell, window_size=201, order=2)
Time_GPU_SG=time.time()-start

48

Performance Analysis: Savitzky-Golay Filter

Some more insights about
CUDA Kernels using profiling
tools - nsys profile, nsys-ui

def detect_peaks_gpu(x, mph=None, mpd=1, threshold=0)
49

Peak Detection for Gas Cell

● There is no function like scipy.signal.find_peaks() in CuPy yet.

● Peak detection for Gas Cell on GPU is developed based on idea that- a peak must be greater
(or smaller) than its immediate neighbors, but the performance need to be improved.

50

Some more Signal Processing Routines

A comparison of cupy and numpy implementations on 2.5 million data points sample(time in seconds) :

 Routines Numpy CuPy Speed

Interpolation: np.interp -> cp.interp 0.055173 0.001341 41.4x

Unwrap: np.unwrap->cp.unwrap 0.143882 0.015522 9.2x

Convolution: np.convolve->cp.convolve 0.326742 0.014102 23.1x

Angle: np.angle-> cp.angle 0.165760 0.004315 38.41x

Sort: np.sort->cp.sort 0.071232 0.002608 27.3x

Absolute: np.abs->cp.abs 0.005381 0.004910 1.09x

51

 Fast-Fourier Transform in CuPy vs SciPy

cupyx.scipy.fft(x[, n, axis, norm, overwrite_x, plan])
● access advanced routines that cuFFT like

get_plan_fft()
● Improve performance and behavior of the FFT

routines -
https://docs.cupy.dev/en/stable/user_guide/fft.html

Y = cp.fft.rfft(Meas_Linear, int(len(Meas_Linear)))

https://docs.nvidia.com/cuda/cufft/index.html
https://docs.cupy.dev/en/stable/user_guide/fft.html

Outline

Frequency Scanning Interferometry System

 Signal Processing in FSI

CuPy and Signal Processing

52

Outlook

● Butterworth Filter
● Hilbert Transform
● Savitzky-Golay Filter

53

Outlook: What lies ahead ?

● CuPy - a great library to start and test processing on GPU and expand to Signal
Processing

● More performance tests and analysis to do with multiple channels and ultimately to
improve performance

● Move to more CuPy based custom Kernels

● Upstreaming developments to CuPy repository

54

Outlook: What lies ahead ?

Now this is not the end. It is not even the beginning of the end. But it is,
perhaps, the end of the beginning - Winston Churchill

● CuPy - a great library to start and test processing on GPU and expand to Signal
Processing

● More performance tests and analysis to do with multiple channels and ultimately to
improve performance

● Move to more CuPy based custom Kernels

● Upstreaming developments to CuPy repository

