
Mitigating Processor
Vulnerabilities by Restructuring
the Kernel Address Space

Sebastian Eydam



About Me

rComputer-Science student at BTU Cottbus since 2015
rCyberus Technology intern since 2017
rCyberus Technology employee since 2022

2



About Cyberus

r german cyber security software company
r founded in 2017
r focus on secure virtualization and automated software testing
r https://www.cyberus-technology.de/blog.html

r https://github.com/cyberus-technology/hedron

3

https://www.cyberus-technology.de/blog.html
https://github.com/cyberus-technology/hedron


Motivation

r processor-level vulnerabilities allow attackers in userspace to leak
information from kernel address space

r existing mitigations introduce costly instructions into performance critical
parts of the kernel

r investigate an alternative mitigation strategy on the kernel design level
that ideally adds no runtime overhead and is CPU independent

4



Motivation

r processor-level vulnerabilities allow attackers in userspace to leak
information from kernel address space

r existing mitigations introduce costly instructions into performance critical
parts of the kernel

r investigate an alternative mitigation strategy on the kernel design level
that ideally adds no runtime overhead and is CPU independent

4



Motivation

r processor-level vulnerabilities allow attackers in userspace to leak
information from kernel address space

r existing mitigations introduce costly instructions into performance critical
parts of the kernel

r investigate an alternative mitigation strategy on the kernel design level
that ideally adds no runtime overhead and is CPU independent

4



Talking Points

Current Status
Proposed Mitigation

Case-Study: Hedron

Measurement
Efficacy

Conclusion

5



Current Status
Underlying Problem

Virtual address space
of the attacker

0 -1

attacker crypto-keys

Virtual address space
of the crypto-process

0 -1

crypto-process crypto-keys

user kernel

attacker crypto-process OS management data

6



Current Status
Kernel Page-Table Isolation (KPTI)

crypto-keys

Virtual address space
of the attacker

running in user-mode

0 -1

attacker

Virtual address space
of the attacker

running in kernel-mode

0 -1

attacker

user kernel

attacker crypto-process OS management data

7



Current Status
Existing Mitigations and Their Runtime-Overheads

rKernel Page-Table Isolation: 5% - 30%

rSpeculative Load Hardening: 10% - 50%

rRetpoline: up to 20%
rDisabling Speculative Execution: > 100%
r Indirect Branch Control: 20% - 50%

8



Current Status
Existing Mitigations and Their Runtime-Overheads

rKernel Page-Table Isolation: 5% - 30%

rSpeculative Load Hardening: 10% - 50%

rRetpoline: up to 20%
rDisabling Speculative Execution: > 100%
r Indirect Branch Control: 20% - 50%

8



Current Status
Existing Mitigations and Their Runtime-Overheads

rKernel Page-Table Isolation: 5% - 30%

rSpeculative Load Hardening: 10% - 50%

rRetpoline: up to 20%

rDisabling Speculative Execution: > 100%
r Indirect Branch Control: 20% - 50%

8



Current Status
Existing Mitigations and Their Runtime-Overheads

rKernel Page-Table Isolation: 5% - 30%

rSpeculative Load Hardening: 10% - 50%

rRetpoline: up to 20%
rDisabling Speculative Execution: > 100%

r Indirect Branch Control: 20% - 50%

8



Current Status
Existing Mitigations and Their Runtime-Overheads

rKernel Page-Table Isolation: 5% - 30%

rSpeculative Load Hardening: 10% - 50%

rRetpoline: up to 20%
rDisabling Speculative Execution: > 100%
r Indirect Branch Control: 20% - 50%

8



Proposed Mitigation
General Idea

Virtual address space
of the attacker

0 -1

attacker Managementattacker

Virtual address space
of the crypto-process

0 -1

crypto-process Managementcrypto-process

user kernel

9



Proposed Mitigation
Process-Local Data Selection

Does it contain secrets?

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Make it process-local. Do not make it process-local.

yes

no

yes

yes

no

no

yes

no

10



Case-Study: Hedron
Process-Local Data Selection

UTCB

Does it contain secrets?

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Does it contain secrets?

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Make it
process-local.

Do not make it
process-local.

no

yes

yes

no

no

yes

no

yes
yes

11



Case-Study: Hedron
Process-Local Data Selection

UTCB

Does it contain secrets? Yes

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Does it contain secrets?

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Make it
process-local.

Do not make it
process-local.

no

yes

yes

no

no

yes

no

yes
yes

11



Case-Study: Hedron
Process-Local Data Selection

UTCB

Does it contain secrets? Yes

Does it have to be shared? Yes

Is it accessed during context switch?

Can the access be split?

Does it contain secrets?

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Make it
process-local.

Do not make it
process-local.

no

yes

yes

no

no

yes

no

yes
yes

11



Case-Study: Hedron
Process-Local Data Selection

FPU-state

Does it contain secrets?

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Does it contain secrets?

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Make it
process-local.

Do not make it
process-local.

no

no

yes

no

yes

no

yes

yes

12



Case-Study: Hedron
Process-Local Data Selection

FPU-state

Does it contain secrets? Yes

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Does it contain secrets?

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Make it
process-local.

Do not make it
process-local.

no

no

yes

no

no

yes

yes

yes

12



Case-Study: Hedron
Process-Local Data Selection

FPU-state

Does it contain secrets? Yes

Does it have to be shared? No

Is it accessed during context switch?

Can the access be split?

Does it contain secrets?

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Make it
process-local.

Do not make it
process-local.

no

no

yes

no
yes

yes

yes

no

12



Case-Study: Hedron
Process-Local Data Selection

FPU-state

Does it contain secrets? Yes

Does it have to be shared? No

Is it accessed during context switch? Yes

Can the access be split?

Does it contain secrets?

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Make it
process-local.

Do not make it
process-local.

no

no

yes

no

yes

yes

no

yes

12



Case-Study: Hedron
Process-Local Data Selection

FPU-state

Does it contain secrets? Yes

Does it have to be shared? No

Is it accessed during context switch? Yes

Can the access be split? Yes

Does it contain secrets?

Does it have to be shared?

Is it accessed during context switch?

Can the access be split?

Make it
process-local.

Do not make it
process-local.

no

no

yes

no

yes

no

yes

yes

12



Case-Study: Hedron
Implementation

The prototype needed ...

r a memory allocator for process-local memory

r slight modifications of the context switch
r a mechanism to initialize process-local memory

13



Case-Study: Hedron
Implementation

The prototype needed ...

r a memory allocator for process-local memory
r slight modifications of the context switch

r a mechanism to initialize process-local memory

13



Case-Study: Hedron
Implementation

The prototype needed ...

r a memory allocator for process-local memory
r slight modifications of the context switch
r a mechanism to initialize process-local memory

13



Case-Study: Hedron
Initialization-Problem

TcreateVAcreate
active

VAnew
inactive

create_thread(va_new)

14



Case-Study: Hedron
Initialization-Problem

TcreateVAcreate
active

VAnew
inactive

create_thread(va_new)

alloc_pl()

14



Case-Study: Hedron
Initialization-Problem

TcreateVAcreate
active

VAnew
inactive

create_thread(va_new)

alloc_pl()

init_pl()

E

14



Measurement
Methodology

r focused on the context switch mechanism

rmicrobenchmark
r Linux kernel compile
rWindows DiskSpd

15



Measurement
Methodology

r focused on the context switch mechanism
rmicrobenchmark

r Linux kernel compile
rWindows DiskSpd

15



Measurement
Methodology

r focused on the context switch mechanism
rmicrobenchmark
r Linux kernel compile

rWindows DiskSpd

15



Measurement
Methodology

r focused on the context switch mechanism
rmicrobenchmark
r Linux kernel compile
rWindows DiskSpd

15



Measurement
Microbenchmark

local_benchmark_loop remote_benchmark_loop

semaphore_a.down()

semaphore_b.up()

semaphore_a.up()

semaphore_b.down()

loop [i<REPETITIONS/2]

context
switch

16



Measurement
Microbenchmark - Results

Hedron (unmodified) Hedron with mitigation
Cycles per context switch 2294 2315

17



Measurement
Linux kernel compile - Results

unmodified
σ = 4.8s

mitigated
σ = 5.3s

182 184 186 188 190 192 194 196 198 200 202
time in
seconds

18



Measurement
Windows DiskSpd - Results (128K seq read, threads: 1, queue depth: 32)

unmodified
σ = 103 MiB/s

mitigated
σ = 74 MiB/s

700 750 800 850 900 950 1000 1050 1100 1150 1200 MiB/s

19



Measurement
Windows DiskSpd - Results (4k rnd read, threads: 16, queue depth: 32)

unmodified
σ = 4.2 MiB/s

mitigated
σ = 4.0 MiB/s

56 58 60 62 64 66 68 70 72 74 76 MiB/s

20



Efficacy of the Mitigation

Mitigation M
el
td
ow
n

S
pe
ct
re
v1

S
pe
ct
re
v2

un
kn
ow
n

ze
ro
co
st

C
P
U
in
de
pe
nd
en
t

Kernel Page Table Isolation

Disabling speculative execution

Speculative Load Hardening

Retpolines

Indirect Branch Control

Proposed Mitigation

21



Efficacy of the Mitigation

Mitigation M
el
td
ow
n

S
pe
ct
re
v1

S
pe
ct
re
v2

un
kn
ow
n

ze
ro
co
st

C
P
U
in
de
pe
nd
en
t

Kernel Page Table Isolation ✓ ✓
Disabling speculative execution

Speculative Load Hardening

Retpolines

Indirect Branch Control

Proposed Mitigation

21



Efficacy of the Mitigation

Mitigation M
el
td
ow
n

S
pe
ct
re
v1

S
pe
ct
re
v2

un
kn
ow
n

ze
ro
co
st

C
P
U
in
de
pe
nd
en
t

Kernel Page Table Isolation ✓ ✓
Disabling speculative execution

Speculative Load Hardening

Retpolines

Indirect Branch Control

Proposed Mitigation

21



Efficacy of the Mitigation

Mitigation M
el
td
ow
n

S
pe
ct
re
v1

S
pe
ct
re
v2

un
kn
ow
n

ze
ro
co
st

C
P
U
in
de
pe
nd
en
t

Kernel Page Table Isolation ✓ ✓
Disabling speculative execution

Speculative Load Hardening

Retpolines

Indirect Branch Control

Proposed Mitigation

21



Efficacy of the Mitigation

Mitigation M
el
td
ow
n

S
pe
ct
re
v1

S
pe
ct
re
v2

un
kn
ow
n

ze
ro
co
st

C
P
U
in
de
pe
nd
en
t

Kernel Page Table Isolation ✓ ✓
Disabling speculative execution

Speculative Load Hardening

Retpolines

Indirect Branch Control

Proposed Mitigation

21



Efficacy of the Mitigation

Mitigation M
el
td
ow
n

S
pe
ct
re
v1

S
pe
ct
re
v2

un
kn
ow
n

ze
ro
co
st

C
P
U
in
de
pe
nd
en
t

Kernel Page Table Isolation ✓ ✓
Disabling speculative execution

Speculative Load Hardening

Retpolines

Indirect Branch Control

Proposed Mitigation

21



Efficacy of the Mitigation

Mitigation M
el
td
ow
n

S
pe
ct
re
v1

S
pe
ct
re
v2

un
kn
ow
n

ze
ro
co
st

C
P
U
in
de
pe
nd
en
t

Kernel Page Table Isolation ✓ ✓
Disabling speculative execution

Speculative Load Hardening

Retpolines

Indirect Branch Control

Proposed Mitigation ✓ ✓ ✓ ✓

21



Conclusion

r investigate an alternative mitigation for side-channel attacks

r created a process-local memory region with distinct content for different processr switching the process-local memory is done as part of the context switch
r this mitigation is zero-cost and CPU independent
r implemented a prototype as a proof of concept
rmeasurements show no overhead
r https://github.com/amphi/hedron/tree/new-mitigation-prototype

22

https://github.com/amphi/hedron/tree/new-mitigation-prototype


Conclusion

r investigate an alternative mitigation for side-channel attacksr created a process-local memory region with distinct content for different process

r switching the process-local memory is done as part of the context switch
r this mitigation is zero-cost and CPU independent
r implemented a prototype as a proof of concept
rmeasurements show no overhead
r https://github.com/amphi/hedron/tree/new-mitigation-prototype

22

https://github.com/amphi/hedron/tree/new-mitigation-prototype


Conclusion

r investigate an alternative mitigation for side-channel attacksr created a process-local memory region with distinct content for different processr switching the process-local memory is done as part of the context switch

r this mitigation is zero-cost and CPU independent
r implemented a prototype as a proof of concept
rmeasurements show no overhead
r https://github.com/amphi/hedron/tree/new-mitigation-prototype

22

https://github.com/amphi/hedron/tree/new-mitigation-prototype


Conclusion

r investigate an alternative mitigation for side-channel attacksr created a process-local memory region with distinct content for different processr switching the process-local memory is done as part of the context switch
r this mitigation is zero-cost and CPU independent

r implemented a prototype as a proof of concept
rmeasurements show no overhead
r https://github.com/amphi/hedron/tree/new-mitigation-prototype

22

https://github.com/amphi/hedron/tree/new-mitigation-prototype


Conclusion

r investigate an alternative mitigation for side-channel attacksr created a process-local memory region with distinct content for different processr switching the process-local memory is done as part of the context switch
r this mitigation is zero-cost and CPU independent
r implemented a prototype as a proof of concept

rmeasurements show no overhead
r https://github.com/amphi/hedron/tree/new-mitigation-prototype

22

https://github.com/amphi/hedron/tree/new-mitigation-prototype


Conclusion

r investigate an alternative mitigation for side-channel attacksr created a process-local memory region with distinct content for different processr switching the process-local memory is done as part of the context switch
r this mitigation is zero-cost and CPU independent
r implemented a prototype as a proof of concept
rmeasurements show no overhead

r https://github.com/amphi/hedron/tree/new-mitigation-prototype

22

https://github.com/amphi/hedron/tree/new-mitigation-prototype


Conclusion

r investigate an alternative mitigation for side-channel attacksr created a process-local memory region with distinct content for different processr switching the process-local memory is done as part of the context switch
r this mitigation is zero-cost and CPU independent
r implemented a prototype as a proof of concept
rmeasurements show no overhead
r https://github.com/amphi/hedron/tree/new-mitigation-prototype

22

https://github.com/amphi/hedron/tree/new-mitigation-prototype

	Current Status
	Proposed Mitigation
	Case-Study: Hedron
	Measurement
	Efficacy
	Conclusion

