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About Cyberus
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Motivation

r processor-level vulnerabilities allow attackers in userspace to leak
information from kernel address space

r existing mitigations introduce costly instructions into performance critical
parts of the kernel

r investigate an alternative mitigation strategy on the kernel design level
that ideally adds no runtime overhead and is CPU independent
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Current Status
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Current Status
Kernel Page-Table Isolation (KPTI)
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Current Status
Existing Mitigations and Their Runtime-Overheads

rKernel Page-Table Isolation: 5% - 30%

rSpeculative Load Hardening: 10% - 50%

rRetpoline: up to 20%
rDisabling Speculative Execution: > 100%
r Indirect Branch Control: 20% - 50%
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Proposed Mitigation
General Idea
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Proposed Mitigation
Process-Local Data Selection
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Case-Study: Hedron
Process-Local Data Selection
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Case-Study: Hedron
Implementation

The prototype needed ...

r a memory allocator for process-local memory

r slight modifications of the context switch
r a mechanism to initialize process-local memory
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Case-Study: Hedron
Initialization-Problem

TcreateVAcreate
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VAnew
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Measurement
Methodology

r focused on the context switch mechanism

rmicrobenchmark
r Linux kernel compile
rWindows DiskSpd
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Measurement
Microbenchmark

local_benchmark_loop remote_benchmark_loop

semaphore_a.down()

semaphore_b.up()

semaphore_a.up()

semaphore_b.down()

loop [i<REPETITIONS/2]

context
switch
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Measurement
Microbenchmark - Results

Hedron (unmodified) Hedron with mitigation
Cycles per context switch 2294 2315
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Measurement
Linux kernel compile - Results

unmodified
σ = 4.8s

mitigated
σ = 5.3s

182 184 186 188 190 192 194 196 198 200 202
time in
seconds
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Measurement
Windows DiskSpd - Results (128K seq read, threads: 1, queue depth: 32)

unmodified
σ = 103 MiB/s

mitigated
σ = 74 MiB/s

700 750 800 850 900 950 1000 1050 1100 1150 1200 MiB/s
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Measurement
Windows DiskSpd - Results (4k rnd read, threads: 16, queue depth: 32)

unmodified
σ = 4.2 MiB/s

mitigated
σ = 4.0 MiB/s

56 58 60 62 64 66 68 70 72 74 76 MiB/s
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Efficacy of the Mitigation
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Conclusion

r investigate an alternative mitigation for side-channel attacks

r created a process-local memory region with distinct content for different processr switching the process-local memory is done as part of the context switch
r this mitigation is zero-cost and CPU independent
r implemented a prototype as a proof of concept
rmeasurements show no overhead
r https://github.com/amphi/hedron/tree/new-mitigation-prototype
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