
Seamless Kernel Update

Longjun Luo (luolongjun@huawei.com)

OpenEuler ops-sig

https:/ /gi tee.com/openeuler/nvwa

Contents

01 Background

02 Froze/Resume Applications

03
Kernel fast boot

04
Keep Devices Status

05
Future work

Background

• Present Situation

01

Background

NICDisk ACC ……Devices

Kernel

System & Library
OS

App
Docker

VM

Application App

bugs

Kernel Bugs

Ø Kernel live patch to fix the bug
Ø No live patch for some bugs
Ø Require significant programming effort

Ø Live migration for APP/VM & Reboot
Ø No method for the pass-thought device
Ø Difficult to transmit large memory

For Example

Machine: Bare-Metal Server Kunpeng 920
Memory：380G
Application：MySQL (DB)

* Difficult to transmit large memory data

AppApp

Background

old kernel Bug

App A App B App C App D

KEY

new kernel

App A App B App C App D

KEY

KEXEC

CRIU

Ø Time cost is unacceptable

Ø Limited support for kernel driver

Acceleration

App & VM

App & VM

Froze Dump Resource KEXEC

Resume Restore Resource Boot

old

new

* time cost = dumping time + kernel switch time(KEXEC) + restoration time

Froze/Resume Application

• Pin Process Memory

• Pin Kernel Memory

02

Keep memory

CRIU writes the copy of application
memory into disk file for restoring the
application. When the data is large,
the copy operation will cost too much
time.

In order to avoid copy and read
operation, we can keep the
memory(pin memory) and remap the
memory to the restoring task.

Pin application memory

app CRIU

User

Kernel
p
a
g
e

p
a
g
e

p
a
g
e

dump page.img size: 0

p
a
g
e

p
a
g
e

p
a
g
e

pin

app CRIU

User

Kernel
p
a
g
e

p
a
g
e

p
a
g
e

copy

p
a
g
e

p
a
g
e

p
a
g
e

dump
page.img size: 4.1G

No copy, only stand

Keep user memory unchanged in new kernel

Record memory mapping relation

App exit

App App’

Reserved memory physical pages

Pin memory physical pages

Application memory areaCRIU
checkpoint

Stop old kernel Boot new kernel

R
eserved m

em
ory

Init memory physical pages

Remapping memory physical pages

CRIU
restore

Application memory area

Reserved

Keep kernel memory unchanged in new kernel

Pin slab controller

p
a
g
e

p
a
g
e

p
a
g
e

Reserved memory

Old kernel

Dump state
Pin slab controller

p
a
g
e

p
a
g
e

p
a
g
e

New kernel

Restore state

pin

* Create a pin slab controller to manage the old kernel pages which need to keep constant
while booting the new kernel.

* Support kmalloc/vmalloc.

Kernel Fast Reboot

• CPU Park

• Preload and Decompress kexec Images

• Defer and parallelize Initialization

03

CPU Park

X86 ARM ARM(nvwa)

Startup time(s/per cpu) 0.003~0.004s 0.03~0.04s 0.0003 s

ARM(nvwa)/other 1/10+ 1/100+ 1

Ø process
S1：Reserve Memory

 Reserve some space for CPU park

code and data.

S2：Kernel Down

 When APs get reboot IPI, they will

execute CPU park code where APs will

spin and wait on an address.

S3：Kernel Up

 After BSP reboot successfully, it will

wake up APs by writing an entry address

to the spin-read address so that APs can

jump to the normal boot-up procedure.

S1

S2

Preload and decompress kexec images

Old Kernel Old Kernel New Kernel

initramfs

Setup page

Second kernel pages

kexec -q kexec -q

Load
New
Kernel Execute

New
Kernel

KEXEC Design

Decompressed initramfs.gz

 Decompressed bzImage

Boot memory

New bzImage 10s 100ms

Preload Image ARM KUNPENG 920 128core

Defer and parallelize initialization

commit e44431498f5fbf427f139aa413cf381b4fa3a600

Author: Daniel Jordan <daniel.m.jordan@oracle.com>

Date: Wed Jun 3 15:59:51 2020 -0700

 mm: parallelize deferred_init_memmap()

On Josh's 96-CPU and 192G memory system:

 Without this patch series:
 [0.487132] node 0 initialised, 23398907 pages in
292ms
 [0.499132] node 1 initialised, 24189223 pages in
304ms
 ...
 [0.629376] Run /sbin/init as init process

 With this patch series:
 [0.231435] node 1 initialised, 24189223 pages in 32ms
 [0.236718] node 0 initialised, 23398907 pages in 36ms

 *Intel(R) Xeon(R) Platinum 8167M CPU @ 2.00GHz (Skylake, bare
metal)
 2 nodes * 26 cores * 2 threads = 104 CPUs
 384G/node = 768G memory

Deferred struct page init is a significant bottleneck
in kernel boot. Optimizing it maximizes availability
for large-memory systems and allows spinning up
short-lived VMs as needed without having to leave
them running. It also benefits bare metal
machines hosting VMs that are sensitive to
downtime. In projects such as VMM Fast
Restart[1], where guest state is preserved across
kexec reboot, it helps prevent application and
network timeouts in the guests.

Defer and parallelize initialization

module.async_probe [KNL]
Enable asynchronous probe on this module.

 driver_async_probe= [KNL]
List of driver names to be probed asynchronously.

 Format: <driver_name1>,<driver_name2>...

deferred_probe_timeout=

commit d1c3414c2a9d10ef7f0f7665f5d2947cd088c093
Author: Grant Likely <grant.likely@secretlab.ca>
Date: Mon Mar 5 08:47:41 2012 -0700

 drivercore: Add driver probe deferral mechanism

[KNL] Debugging option to set a timeout in
seconds deferred probe to give up waiting on
dependencies to probe. Only specific
dependencies (subsystems or drivers) that have
opted in will be ignored. A timeout of 0 will
timeout at the end of initcalls. This option will also
dump out devices still on the deferred probe list
after retrying.

 Allow drivers to report at probe time that they cannot
get all the resources required by the device, and should
be retried at a later time.

 This should completely solve the problem of getting
devices initialized in the right order. Right now this is
mostly handled by mucking about with initcall ordering
which is a complete hack, and doesn‘t even remotely
handle the case where device drivers are in modules.
This approach completely sidesteps the issues by
allowing driver registration to occur in any order, and
any driver can request to be retried after a few more
other drivers get probed.

*Deferring device driver probe can only defer the entire device
initialization , however, the kernel booting only uses part device
function at sometime , we can defer the other part of the device
initialization.

Keep Device State

• Keep PCI Device

• Keep Driver State

04

Keep Device State

Ø Device state information
Ø position in PCI tree
Ø BAR resource usage
Ø IRQ and DMA config
Ø memory, threads, kernel objs …

State Information

kexec

old new

ACC ACC

Keep PCI Device

Ø Skip PCI Enumeration

Ø Restore PCI tree from old kernel

Ø Do not read/write HW registers

Ø Restore BAR resource allocated from old kernel

Ø Skip HW reset and device init

Ø Keep device alive

Ø Reload IRQ and DMA config from old kernel

Ø Reload memory and IO mapping

Keep Driver State —— Try and Challenge

section 1
section 2
section 3
section 4
section 5

Reserve
d

Virtual function table

func 1

func 2

func 3

Ø Isolated kernel driver from kernel space partly

Ø Add a driver suspend/restore API

Future Attempt

• Conclusion

• Development plan

05

Conclusions

Ø Save/restore status in memory or keep resources in memory directly

Ø Rewrite of driver code is necessary

Ø Many work needed to accelerate linux reboot process

Development plan

Ø A new and easy-to-use tool to checkpoint/restore apps (kernel module + userspace)

Ø Combine livepatch and seamless kernel update

Ø Standard and universal method for drivers save/restore

Ø Support for VM host update natively

NVWA Developers

Lin Fu (fulin10@huawei.com)
Longjun Luo (luolongjun@huawei.com)

Lin Zhu (zhuling8@huawei.com)
Jingxian He (hejingxian@huawei.com)

Jianhai Ruan (luanjianhai@huawei.com)
Yan Sang (sangyan@huawei.com)

