Why Safe
Programming Matters
and Why Rust?

Deepu K Sasidharan
@deepulO5 | deepu.tech

okta

https://deepu.tech/

o Deepu K Sasidharan

JHipster co-lead developer
Creator of KDash Full Stack
Developer Advocate @ Okta Development

o with JHipster
OSS aficionado, author, speaker, polyglot dev

Second Edition

Build full stack applications and microservices with Spring Boot

y @deepul05

)7V deepul05

¥ @oktaDev ¥ @deepu105

What is safe programming?
More precisely,
What is a safe programming language?

o Safe programming

Programming Safety = Memory safety + Type safety + Thread safety

¥ @oktaDev ¥ @deepu105

o Memory safety

Predictable behaviour (No undefined behaviours)
No unauthorized/invalid pointer access

No free after use errors

No double free errors

No buffer overflows

Null safety
o Not applicable to all languages but still an issue in many
o The worst invention in programming - as per its inventor

https://deepu.tech/memory-management-in-programming/

¥ @oktaDev ¥ @deepu105

https://deepu.tech/memory-management-in-programming/

o Type safety

e Correctness of data type is ensured
® No need to check at runtime
e Memory safety is required for type safety

¥ @oktaDev ¥ @deepu105

o Thread safety

® No race conditions
® No memory corruption
® Fearless concurrency

¥ @oktaDev ¥ @deepu105

¥ @oktaDev @deepu105

o CVE galore from memory safety issues

¥ @oktaDev

About 70% of all CVEs at Microsoft are memory safety issues

Two-thirds of Linux kernel vulnerabilities come from memory safety issues
An Apple study found that 60-70% of vulnerabilities in iOS and macQOS are
memory safety vulnerabilities

Google estimated that 90% of Android vulnerabilities are memory safety issues
70% of all Chrome security bugs are memory safety issues

An analysis of 0-days that were discovered being exploited in the wild found that

more than 80% of the exploited vulnerabilities were memory safety issues
Some of the most popular security issues of all time are memory safety issues

O Slammer worm, WannaCry, Trident exploit, HeartBleed, Stagefright, Ghost

¥ @deepu105

https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/
https://static.sched.com/hosted_files/lssna19/d6/kernel-modules-in-rust-lssna2019.pdf
https://langui.sh/2019/07/23/apple-memory-safety/
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://twitter.com/LazyFishBarrel/status/1129000965741404160
https://en.wikipedia.org/wiki/SQL_Slammer
https://www.abetterinternet.org/docs/memory-safety/out-of-bounds%20write
https://blog.lookout.com/trident-pegasus-technical-details
https://tonyarcieri.com/would-rust-have-prevented-heartbleed-another-look
https://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
https://blog.qualys.com/laws-of-vulnerabilities/2015/01/27/the-ghost-vulnerability

o Security issues from thread safety

® Information loss caused by a thread overwriting information from another
o Pointer corruption that allows privilege escalation or remote execution
® Integrity loss due to information from multiple threads being interlaced
o The best-known attack of this type is called a TOCTOU (time of check to
time of use) attack caused by race conditions

¥ @oktaDev ¥ @deepu105

https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

o Security issues from type safety

® Low level exploits are possible in languages that are not type safe.
e Type safety is important for memory safety as type safety issues can lead to
memory safety issues

¥ @oktaDev ¥ @deepu105

Why Rust?

o Rust = High level general purpose language

W @oktaDev

Multi-paradigm, ideal for functional, imperative and even OOP
Modern tooling

Ideal for systems programming, embedded, web servers and more
Memory safe

Concurrent

No garbage collection

Performance focused

Most loved language in Stack Overflow survey for 6 years in a row

¥ @deepu105

“Rust throws around some buzz words in its

docs, but they are not just marketing buzz,

they actually mean it with full sincerity and
they actually matter a lot”

O

Rust is safe by default and you can write unsafe code only within unsafe code blocks

¥ @oktaDev

Safety guarantee

Memory safe
Null safe
Type safe
Thread safe

¥ @deepu105

o Memory safety

Memory safety ensured at compile time using the ownership mechanism
Borrow checker built into the compiler
Unsafe mode for manual memory management and memory unsafe code

There is no concept of null at the language level. Instead, Rust provides
Option monad

¥ @oktaDev ¥ @deepu105

o Ownership and borrowing

e No garbage collection or any runtime memory management

e Memory is managed using lifetimes of variables using a borrow checker at
compile time

e No pause times, no runtime overhead

e Efficient and very low memory usage

e Reference counting available when needed

W @oktaDev ¥ @deepu105

o Type safety

“Most modern strictly typed languages guarantees this”

No need for reflection

Memory safety assures type safety as well

Strict compile time type checks

Dynamic typing is possible with dyn and Any but compiler is smart

enough to ensure type safety for those

¥ @oktaDev ¥ @deepu105

o Thread safety

“Fearless concurrency”

W @oktaDev

Threads, coroutines and asynchronous concurrency
Mutex and ARC for shared data concurrency
Channels for message passing concurrency

Data race is not possible in Rust

No need for thread synchronization

Memory and Type safety ensures thread safety

¥ @deepu105

o Zero cost abstractions

“What you don’t use, you don’t pay for. And further: What you do use, you couldn’t
hand code any better.”
— Bjarne Stroustrup

® Your programming style or paradigm does not affect performance

e Number of abstractions does not affect performance as the compiler always
translates your code to the best possible machine code

® You could not get more performance from hand written optimizations

® In-built abstractions are often more performant than hand written code

e Compiler produces identical assembly code for almost all variations

W @oktaDev ¥ @deepu105

O Zero cost abstractions

W @oktaDev

public long factorialForLoop(long number)
long result = 1;
for (; number ©; number--) {
result *= number;

1 result;

public long factorialRec sive(long number)

public long factori tream(long number
t ngeClosed(1, number)
ni, n2) -> n1 * n2);

1 number == 1 ? 1 : number * factorialRecursive(number -

rial_loop(mut num: usize)

let mut result = 1;
while num 0 {

result *= num;
num = num - 1;

result;

irsion(num: usize) -> usize {
match num {
1,

num * factorial_recursion(num - 1),

tor(num: usize) -> usize {
|n1, n2| n1 * n2)

¥ @deepu105

o Immutable by default

e \Variable are immutable by default, including references

e Mutations needs to explicitly declared at all stages using the mut keyword,
like var declaration and method signatures
e \Variables can be passed by value or reference, mutable or immutable
¥ @oktaDev

¥ @deepu105

o Pattern matching

First class support
Can be used for control flow in 1 f, switch, while, for statements
Can be used for error handling, optionals and so on

Can be used for value assignments and for code blocks

¥ @oktaDev ¥ @deepu105

o Advanced generics, traits and types

e Advanced generics
o Generics in types, structs, enums and functions
o No performance impact due to zero cost abstractions
o Generics with lifetime annotations
® Traits for shared behaviour
o Default implementation for traits
o Placeholders for traits, operator overloading
o Trait bounds for Generics
o Multiple and compound trait bounds

e Type aliasing and great type inference

¥ @oktaDev ¥ @deepu105

o Macros

Meta programming
Great for non generic reusable code
Custom behaviours

Declarative macros and Procedural macros

¥ @oktaDev ¥ @deepu105

o Tooling and compiler

e Hands down, one of the best compilers out there
® One of the best tooling you can find in terms of features and developer

experience
o Cargo is one stop shop for Rust tooling, build, compilation, formatting, linting,
and so on

® One of the best documentation, which is shipped with the tooling

¥ @oktaDev ¥ @deepu105

o Community and ecosystem

¥ @oktaDev

A very diverse, welcoming and vibrant community

o Community formed from other languages hence bringing in best of many
Rapidly maturing ecosystem

o Growing number of libraries and use cases

o Has a forum which is used more than stack overflow for Rust

Great backward compatibility
Big names like Google, Apple, Microsoft, Amazon and Facebook are already behind rust
and investing it.
It’s on path to become the second supported language in Linux development.
Use case has already extended to embedded, web assembly, kubernetes, web
development, game development and even client side

o It’s only a matter of time until you can do any use case in Rust

¥ @deepu105

Does that mean there is no
downsides?

o The downsides

Complexity

Steep learning curve

Young and maturing

Many ways to do the same thing (kind of like JS)

¥ @oktaDev ¥ @deepu105

Rust can be the ideal general
purpose language

o High level vs Low level language

High level language

W @oktaDev

Human oriented

Easier to read

Portable

Need to be compiled to
machine code

Not as efficient as a low
level language

Provides features like
memory management,
abstractions and so on

Low level language

Machine oriented

Harder to read

Hardware specific

Can be understood by machines
Fast and efficient

No fancy features

¥ @deepu105

o Performance, Memory and power

From the research paper “Energy Efficiency across Programming Languages”

| Total
Energy Time Mb
©C 1.00 ©C 1.00 (©) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(©) C++ 1.34 (c) C++ 1.56 ©C 117,
(c) Ada 1.70 (c) Ada 1.85 (¢) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 147
(c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(¢) Ocaml 2.40 (¢) Ocaml 3.09 (c) Haskell 245
(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 () Swift 4.20 (¢) Ocaml 2.82
(c) Go 3.23 () Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 334
(v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3.52
(i) JavaScript 445 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript | 2150 (i) Hack 26.99 (v) F# 4.25
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4.69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript | 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

¥ @oktaDev

¥ @deepu105

https://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf

o High level language compromise

e Safety
e Speed
e Abstractions

Pick two

¥ @oktaDev ¥ @deepu105

o High level language compromise

e Safety
e Speed
e Abstractions

With Rust we can get all three. Hence Rust is a high level language with
performance and memory efficiency closest to a low level language. The only
tradeoff you will make with Rust is the learning curve.

W @oktaDev ¥ @deepu105

“Rust, not Firefox, is Mozilla’s greatest
industry contribution”

— TechRepublic

W @oktaDev

Thank You

Deepu K Sasidharan

@deepulO5 | deepu.tech

https://deepu.tech/tags#rust

okta

¥ @deepu105

https://deepu.tech/

