
@deepu105@oktaDev

Why Safe
Programming Matters

and Why Rust?

Deepu K Sasidharan

@deepu105 | deepu.tech

https://deepu.tech/

@deepu105@oktaDev

Deepu K Sasidharan

JHipster co-lead developer

Creator of KDash

Developer Advocate @ Okta

OSS aficionado, author, speaker, polyglot dev

 @deepu105

 deepu.tech

 deepu105

@deepu105@oktaDev

What is safe programming?
More precisely,
What is a safe programming language?

@deepu105@oktaDev

Safe programming

Programming Safety = Memory safety + Type safety + Thread safety

@deepu105@oktaDev

Memory safety

● Predictable behaviour (No undefined behaviours)

● No unauthorized/invalid pointer access

● No free after use errors

● No double free errors

● No buffer overflows

● Null safety
○ Not applicable to all languages but still an issue in many

○ The worst invention in programming - as per its inventor

https://deepu.tech/memory-management-in-programming/

https://deepu.tech/memory-management-in-programming/

@deepu105@oktaDev

Type safety

● Correctness of data type is ensured

● No need to check at runtime

● Memory safety is required for type safety

@deepu105@oktaDev

Thread safety

● No race conditions

● No memory corruption

● Fearless concurrency

@deepu105@oktaDev

Why does it matter?

@deepu105@oktaDev

CVE galore from memory safety issues

● About 70% of all CVEs at Microsoft are memory safety issues

● Two-thirds of Linux kernel vulnerabilities come from memory safety issues

● An Apple study found that 60-70% of vulnerabilities in iOS and macOS are

memory safety vulnerabilities

● Google estimated that 90% of Android vulnerabilities are memory safety issues

● 70% of all Chrome security bugs are memory safety issues

● An analysis of 0-days that were discovered being exploited in the wild found that

more than 80% of the exploited vulnerabilities were memory safety issues

● Some of the most popular security issues of all time are memory safety issues

○ Slammer worm, WannaCry, Trident exploit, HeartBleed, Stagefright, Ghost

https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/
https://static.sched.com/hosted_files/lssna19/d6/kernel-modules-in-rust-lssna2019.pdf
https://langui.sh/2019/07/23/apple-memory-safety/
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://twitter.com/LazyFishBarrel/status/1129000965741404160
https://en.wikipedia.org/wiki/SQL_Slammer
https://www.abetterinternet.org/docs/memory-safety/out-of-bounds%20write
https://blog.lookout.com/trident-pegasus-technical-details
https://tonyarcieri.com/would-rust-have-prevented-heartbleed-another-look
https://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
https://blog.qualys.com/laws-of-vulnerabilities/2015/01/27/the-ghost-vulnerability

@deepu105@oktaDev

Security issues from thread safety

● Information loss caused by a thread overwriting information from another

○ Pointer corruption that allows privilege escalation or remote execution

● Integrity loss due to information from multiple threads being interlaced

○ The best-known attack of this type is called a TOCTOU (time of check to

time of use) attack caused by race conditions

https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

@deepu105@oktaDev

Security issues from type safety

● Low level exploits are possible in languages that are not type safe.

● Type safety is important for memory safety as type safety issues can lead to

memory safety issues

@deepu105@oktaDev

Why Rust?

@deepu105@oktaDev

Rust = High level general purpose language

● Multi-paradigm, ideal for functional, imperative and even OOP

● Modern tooling

● Ideal for systems programming, embedded, web servers and more

● Memory safe

● Concurrent

● No garbage collection

● Performance focused

● Most loved language in Stack Overflow survey for 6 years in a row

@deepu105@oktaDev

“Rust throws around some buzz words in its
docs, but they are not just marketing buzz,
they actually mean it with full sincerity and

they actually matter a lot”

@deepu105@oktaDev

Safety guarantee

● Memory safe

● Null safe

● Type safe

● Thread safe

Rust is safe by default and you can write unsafe code only within unsafe code blocks

@deepu105@oktaDev

Memory safety

● Memory safety ensured at compile time using the ownership mechanism

● Borrow checker built into the compiler

● Unsafe mode for manual memory management and memory unsafe code

● There is no concept of null at the language level. Instead, Rust provides

Option monad

@deepu105@oktaDev

Ownership and borrowing

● No garbage collection or any runtime memory management

● Memory is managed using lifetimes of variables using a borrow checker at

compile time

● No pause times, no runtime overhead

● Efficient and very low memory usage

● Reference counting available when needed

@deepu105@oktaDev

Type safety

“Most modern strictly typed languages guarantees this”

● No need for reflection

● Memory safety assures type safety as well

● Strict compile time type checks

● Dynamic typing is possible with dyn and Any but compiler is smart

enough to ensure type safety for those

@deepu105@oktaDev

Thread safety

“Fearless concurrency”

● Threads, coroutines and asynchronous concurrency

● Mutex and ARC for shared data concurrency

● Channels for message passing concurrency

● Data race is not possible in Rust

● No need for thread synchronization

● Memory and Type safety ensures thread safety

@deepu105@oktaDev

Zero cost abstractions

“What you don’t use, you don’t pay for. And further: What you do use, you couldn’t

hand code any better.”

– Bjarne Stroustrup

● Your programming style or paradigm does not affect performance

● Number of abstractions does not affect performance as the compiler always

translates your code to the best possible machine code

● You could not get more performance from hand written optimizations

● In-built abstractions are often more performant than hand written code

● Compiler produces identical assembly code for almost all variations

@deepu105@oktaDev

Zero cost abstractions

@deepu105@oktaDev

Immutable by default

● Variable are immutable by default, including references

● Mutations needs to explicitly declared at all stages using the mut keyword,

like var declaration and method signatures

● Variables can be passed by value or reference, mutable or immutable

@deepu105@oktaDev

Pattern matching

● First class support

● Can be used for control flow in if, switch, while, for statements

● Can be used for error handling, optionals and so on

● Can be used for value assignments and for code blocks

@deepu105@oktaDev

Advanced generics, traits and types

● Advanced generics
○ Generics in types, structs, enums and functions

○ No performance impact due to zero cost abstractions

○ Generics with lifetime annotations

● Traits for shared behaviour
○ Default implementation for traits

○ Placeholders for traits, operator overloading

○ Trait bounds for Generics

○ Multiple and compound trait bounds

● Type aliasing and great type inference

@deepu105@oktaDev

Macros

● Meta programming

● Great for non generic reusable code

● Custom behaviours

● Declarative macros and Procedural macros

@deepu105@oktaDev

Tooling and compiler

● Hands down, one of the best compilers out there

● One of the best tooling you can find in terms of features and developer

experience
○ Cargo is one stop shop for Rust tooling, build, compilation, formatting, linting,

and so on

● One of the best documentation, which is shipped with the tooling

@deepu105@oktaDev

Community and ecosystem

● A very diverse, welcoming and vibrant community
○ Community formed from other languages hence bringing in best of many

● Rapidly maturing ecosystem
○ Growing number of libraries and use cases

○ Has a forum which is used more than stack overflow for Rust

● Great backward compatibility

● Big names like Google, Apple, Microsoft, Amazon and Facebook are already behind rust

and investing it.

● It’s on path to become the second supported language in Linux development.

● Use case has already extended to embedded, web assembly, kubernetes, web

development, game development and even client side

○ It’s only a matter of time until you can do any use case in Rust

@deepu105@oktaDev

Does that mean there is no
downsides?

@deepu105@oktaDev

The downsides

● Complexity

● Steep learning curve

● Young and maturing

● Many ways to do the same thing (kind of like JS)

@deepu105@oktaDev

Rust can be the ideal general
purpose language

@deepu105@oktaDev

High level vs Low level language

High level language

● Human oriented
● Easier to read
● Portable
● Need to be compiled to

machine code
● Not as efficient as a low

level language
● Provides features like

memory management,
abstractions and so on

Low level language

● Machine oriented
● Harder to read
● Hardware specific
● Can be understood by machines
● Fast and efficient
● No fancy features

@deepu105@oktaDev

Performance, Memory and power

From the research paper “Energy Efficiency across Programming Languages”

https://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf

@deepu105@oktaDev

High level language compromise

● Safety

● Speed

● Abstractions

Pick two

@deepu105@oktaDev

High level language compromise

● Safety

● Speed

● Abstractions

With Rust we can get all three. Hence Rust is a high level language with

performance and memory efficiency closest to a low level language. The only

tradeoff you will make with Rust is the learning curve.

@deepu105@oktaDev

“Rust, not Firefox, is Mozilla’s greatest
industry contribution”

– TechRepublic

@deepu105@oktaDev

Thank You
Deepu K Sasidharan

@deepu105 | deepu.tech

https://deepu.tech/tags#rust

https://deepu.tech/

