
Designing a New Language for Safety: Fuzion

A minimal language for safety-critical systems 
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Who is this guy?
Fridtjof Siebert

Email: siebert@tokiwa.software
github: fridis
twitter: @fridi_s

‘90-‘94 AmigaOberon, AMOK PD
‘97 FEC Eiffel Compiler Sparc / Solaris
‘98-‘99 OSF: TurboJ Java Compiler
‘00-‘01 PhD on real-time GC
‘02-‘19 JamaicaVM real-time JVM based on

CLASSSPATH / OpenJDK,
VeriFlux static analysis tool

‘20-… Fuzion 
‘21-… Tokiwa Software
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Motivation
Many languages overloaded with concepts like classes, 
methods, interfaces, constructors, traits, records, 
structs, packages, values, …

 ➡ Fuzion has one concept: a feature
Today’s compilers and tools are more powerful

 ➡ Tools make better decisions 
Systems are safety-critical

 ➡ we need to ensure correctness
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Fuzion Summary
Fuzion

 ➡ uses the feature as its main concept

 ➡ is statically typed

 ➡ has inheritance and redefinition

 ➡ uses value types and dynamic (ref) types

 ➡ encourages immutability

 ➡ offloads tasks and decisions from developers to tools
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Backing Company

 ➡ supports development of Fuzion

 ➡ currently three employees

 ➡ hiring

 ➡ searching for funding
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Safety-Critical Systems
Definition (Wikipedia)

 ➡ a system whose failure or malfunction may result in []:

● death or serious injury to people

● loss or severe damage to equipment/property

● environmental harm

 ➡ often require certification (IEC61508, DO178C, etc.)
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Safety-Critical Systems
Certification typically requires

 ➡ defined SW development process

 ➡ traceability

● requirements ⬌ code ⬌ validation ⬌ results

 ➡ rigorous verification and validation

● static analysis can help
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Fuzion Language Tutorial
Not part of this talk

 ➡ online at flang.dev
This talk will show how

 ➡ Java maps to Fuzion
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Feature Examples
Features used as routines with code
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Feature Examples
Features used as routines with code

 HelloWorld is
   say "Hello World!"
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Feature Examples
Nesting of Features

 HelloWorld is
   hw is    
     say "Hello World!"

   hw
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Feature Examples
Features with arguments

 HelloWorld is
   hw(name string) is    
     say "Hello $name!"

   hw "World"



13FOSDEM’22: Designing a New Language for Safety: Fuzion

Feature Examples
Features with inner features

 HelloWorld is
   hw(name string) is    
     run is
       say "Hello $name!"    

   x := hw "World"
   x.run
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Feature Examples
Features with inner features

 HelloWorld is
   hw(name string) is    
     run is
       say "Hello $name!"    

   x := hw "World"
   x.run
Fuzion code consists of feature declarations and feature calls.
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Design by Contract
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Design by Contract
Features define their behavior

 ➡ pre-condition: what has to hold before a call?

 ➡ post-condition: what guarantee is given after the call?

 ➡ concept presented by Betrand Meyer back in 1986
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Design by Contract: Example

 sqrt(a i32) i32
   pre
     a >= 0
   post
     result * result <= a,
     (result + 1) * (result + 1) > a
 is
   ...
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Controlling Contract Checks
Checking contracts dynamically

 ➡ will introduce run-time overhead

 ➡ may be prohibitively expensive

 ➡ may be required for safety
Solution

 ➡ qualified contracts
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Qualified Contracts

 sqrt(a i32) i32
   pre
     debug: a >= 0
   post
     debug 5 : result * result <= a,
     debug 5 : (result + 1) * (result + 1) > a
 is
   ...
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Contract Qualifiers
Fuzion contract qualifiers

 ➡ safety
 ➡ debug

 ➡ debug n
 ➡ pedantic
 ➡ analysis
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Contracts for Static Analysis

 max(a Sequence<i32>) i32
   pre
     debug: !a.isEmpty
   post
     debug: a ∀ x -> x <= result
     debug: a ∃ x -> x = result
     analysis : ∀<i32> x -> x ∈ a : x <= result
     analysis : ∃<i32> x -> x ∈ a && x = result
 is
   ...
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Design-by-Contract & Certification
Contracts provide

 ➡ direct way to add formal requirements to code

 ➡ means to verify these requirements at runtime

 ➡ means to define (or generate) tests

 ➡ formal analysis tools the required input
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Fuzion Toolchain Design 
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Fuzion Toolchain Design 

.fz

.fz

.fz
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Fuzion Toolchain Design 

.fz

Front
end.fz

.fz
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Fuzion Toolchain Design 
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Fuzion Toolchain Design 

.fz

Front
end

.fum Middle
end

.fapp

.fuir
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Analyzer
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Fuzion Toolchain Design 
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Front
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jar

Back
end
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Static Analysis In Fuzion Toolchain
Static analysis currently mostly non-existant.
Will be added to 

 ➡ Front End

 ➡ Middle End

 ➡ Optimizer/Analyzer
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Analysis Facilitated by Simple IR
Fuzion Module files contain

 ➡ Features
● five kinds: routine, field, intrinsic, abstract or choice
● contain name, code, types, inner features

 ➡ Types are feature types or type parameters

 ➡ Code: 10 expressions: call, match, const, assign, pop, ...
● no loops, no gotos
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Static Analysis in Front End
Analyze single module 

 ➡ Type Checking

 ➡ Init-before-use

 ➡ Immutability when escaped

 ➡ Thread safety

.fz

Front
end

.fum

.fz

.fz

.fum

.fum
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Static Analysis in Middle End
Analyze whole application 

 ➡ Dead code removal

 ➡ Code Specialization

 ➡ Thread local data detection

.fum Middle
end

.fapp

.fum

.fum
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Static Analysis in Optimizer/Analyzer
Analyze whole application 

 ➡ Compile-time evaluation

 ➡ Code Specialization

 ➡ Call-graph analysis

 ➡ Lifespan analysis
● stack vs. heap allocation

 ➡ Program-wide data flow

.fapp

.fuir

Optimizer
Analyzer
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Fuzion: Next Steps
Development Plan
 ➡ intermediate files:  .fum, .fapp, .fuir
 ➡ simple analysis tools: field init, immutability
 ➡ C back-end: GC, floats, etc.

● interfacing C library code

 ➡ Standard Library
 ➡ Modeling I/O, thread communication and immutability

● using automatic monadic lifting?
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Conclusion
Fuzion is an exciting new language for safety
 ➡ simplicity
 ➡ design-by-contract
 ➡ prepared for static analysis
 ➡ we need 

● to grow our team
● get developer feedback
● secure long-term funding

 ➡ please get involved!

http://flang.dev
siebert@tokiwa.software

github.com/tokiwa-software/fuzion
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