
Designing a New Language for Safety: Fuzion

A minimal language for safety-critical systems

2FOSDEM’22: Designing a New Language for Safety: Fuzion

Who is this guy?
Fridtjof Siebert

Email: siebert@tokiwa.software
github: fridis
twitter: @fridi_s

‘90-‘94 AmigaOberon, AMOK PD
‘97 FEC Eiffel Compiler Sparc / Solaris
‘98-‘99 OSF: TurboJ Java Compiler
‘00-‘01 PhD on real-time GC
‘02-‘19 JamaicaVM real-time JVM based on

CLASSSPATH / OpenJDK,
VeriFlux static analysis tool

‘20-… Fuzion
‘21-… Tokiwa Software

3FOSDEM’22: Designing a New Language for Safety: Fuzion

Motivation
Many languages overloaded with concepts like classes,
methods, interfaces, constructors, traits, records,
structs, packages, values, …

 ➡ Fuzion has one concept: a feature
Today’s compilers and tools are more powerful

 ➡ Tools make better decisions
Systems are safety-critical

 ➡ we need to ensure correctness

4FOSDEM’22: Designing a New Language for Safety: Fuzion

Fuzion Summary
Fuzion

 ➡ uses the feature as its main concept

 ➡ is statically typed

 ➡ has inheritance and redefinition

 ➡ uses value types and dynamic (ref) types

 ➡ encourages immutability

 ➡ offloads tasks and decisions from developers to tools

5FOSDEM’22: Designing a New Language for Safety: Fuzion

Backing Company

 ➡ supports development of Fuzion

 ➡ currently three employees

 ➡ hiring

 ➡ searching for funding

6FOSDEM’22: Designing a New Language for Safety: Fuzion

Safety-Critical Systems
Definition (Wikipedia)

 ➡ a system whose failure or malfunction may result in []:

● death or serious injury to people

● loss or severe damage to equipment/property

● environmental harm

 ➡ often require certification (IEC61508, DO178C, etc.)

7FOSDEM’22: Designing a New Language for Safety: Fuzion

Safety-Critical Systems
Certification typically requires

 ➡ defined SW development process

 ➡ traceability

● requirements ⬌ code ⬌ validation ⬌ results

 ➡ rigorous verification and validation

● static analysis can help

8FOSDEM’22: Designing a New Language for Safety: Fuzion

Fuzion Language Tutorial
Not part of this talk

 ➡ online at flang.dev
This talk will show how

 ➡ Java maps to Fuzion

9FOSDEM’22: Designing a New Language for Safety: Fuzion

Feature Examples
Features used as routines with code

10FOSDEM’22: Designing a New Language for Safety: Fuzion

Feature Examples
Features used as routines with code

 HelloWorld is
 say "Hello World!"

11FOSDEM’22: Designing a New Language for Safety: Fuzion

Feature Examples
Nesting of Features

 HelloWorld is
 hw is
 say "Hello World!"

 hw

12FOSDEM’22: Designing a New Language for Safety: Fuzion

Feature Examples
Features with arguments

 HelloWorld is
 hw(name string) is
 say "Hello $name!"

 hw "World"

13FOSDEM’22: Designing a New Language for Safety: Fuzion

Feature Examples
Features with inner features

 HelloWorld is
 hw(name string) is
 run is
 say "Hello $name!"

 x := hw "World"
 x.run

14FOSDEM’22: Designing a New Language for Safety: Fuzion

Feature Examples
Features with inner features

 HelloWorld is
 hw(name string) is
 run is
 say "Hello $name!"

 x := hw "World"
 x.run
Fuzion code consists of feature declarations and feature calls.

15FOSDEM’22: Designing a New Language for Safety: Fuzion

Design by Contract

16FOSDEM’22: Designing a New Language for Safety: Fuzion

Design by Contract
Features define their behavior

 ➡ pre-condition: what has to hold before a call?

 ➡ post-condition: what guarantee is given after the call?

 ➡ concept presented by Betrand Meyer back in 1986

17FOSDEM’22: Designing a New Language for Safety: Fuzion

Design by Contract: Example

 sqrt(a i32) i32
 pre
 a >= 0
 post
 result * result <= a,
 (result + 1) * (result + 1) > a
 is
 ...

18FOSDEM’22: Designing a New Language for Safety: Fuzion

Controlling Contract Checks
Checking contracts dynamically

 ➡ will introduce run-time overhead

 ➡ may be prohibitively expensive

 ➡ may be required for safety
Solution

 ➡ qualified contracts

19FOSDEM’22: Designing a New Language for Safety: Fuzion

Qualified Contracts

 sqrt(a i32) i32
 pre
 debug: a >= 0
 post
 debug 5 : result * result <= a,
 debug 5 : (result + 1) * (result + 1) > a
 is
 ...

20FOSDEM’22: Designing a New Language for Safety: Fuzion

Contract Qualifiers
Fuzion contract qualifiers

 ➡ safety
 ➡ debug

 ➡ debug n
 ➡ pedantic
 ➡ analysis

21FOSDEM’22: Designing a New Language for Safety: Fuzion

Contracts for Static Analysis

 max(a Sequence<i32>) i32
 pre
 debug: !a.isEmpty
 post
 debug: a ∀ x -> x <= result
 debug: a ∃ x -> x = result
 analysis : ∀<i32> x -> x ∈ a : x <= result
 analysis : ∃<i32> x -> x ∈ a && x = result
 is
 ...

22FOSDEM’22: Designing a New Language for Safety: Fuzion

Design-by-Contract & Certification
Contracts provide

 ➡ direct way to add formal requirements to code

 ➡ means to verify these requirements at runtime

 ➡ means to define (or generate) tests

 ➡ formal analysis tools the required input

23FOSDEM’22: Designing a New Language for Safety: Fuzion

Fuzion Toolchain Design

24FOSDEM’22: Designing a New Language for Safety: Fuzion

Fuzion Toolchain Design

.fz

.fz

.fz

25FOSDEM’22: Designing a New Language for Safety: Fuzion

Fuzion Toolchain Design

.fz

Front
end.fz

.fz

26FOSDEM’22: Designing a New Language for Safety: Fuzion

Fuzion Toolchain Design

.fz

Front
end

.fum

.fz

.fz

.fum

.fum

27FOSDEM’22: Designing a New Language for Safety: Fuzion

Fuzion Toolchain Design

.fz

Front
end

.fum Middle
end

.fapp

.fz

.fz

.fum

.fum

28FOSDEM’22: Designing a New Language for Safety: Fuzion

Fuzion Toolchain Design

.fz

Front
end

.fum Middle
end

.fapp

.fuir

.fz

.fz

.fum

.fum

Optimizer
Analyzer

29FOSDEM’22: Designing a New Language for Safety: Fuzion

Fuzion Toolchain Design

.fz

Front
end

.fum Middle
end

.fapp

.fuir

Back
end

jar

Back
end

elf

.fz

.fz

.fum

.fum

Optimizer
Analyzer

30FOSDEM’22: Designing a New Language for Safety: Fuzion

Static Analysis In Fuzion Toolchain
Static analysis currently mostly non-existant.
Will be added to

 ➡ Front End

 ➡ Middle End

 ➡ Optimizer/Analyzer

31FOSDEM’22: Designing a New Language for Safety: Fuzion

Analysis Facilitated by Simple IR
Fuzion Module files contain

 ➡ Features
● five kinds: routine, field, intrinsic, abstract or choice
● contain name, code, types, inner features

 ➡ Types are feature types or type parameters

 ➡ Code: 10 expressions: call, match, const, assign, pop, ...
● no loops, no gotos

32FOSDEM’22: Designing a New Language for Safety: Fuzion

Static Analysis in Front End
Analyze single module

 ➡ Type Checking

 ➡ Init-before-use

 ➡ Immutability when escaped

 ➡ Thread safety

.fz

Front
end

.fum

.fz

.fz

.fum

.fum

33FOSDEM’22: Designing a New Language for Safety: Fuzion

Static Analysis in Middle End
Analyze whole application

 ➡ Dead code removal

 ➡ Code Specialization

 ➡ Thread local data detection

.fum Middle
end

.fapp

.fum

.fum

34FOSDEM’22: Designing a New Language for Safety: Fuzion

Static Analysis in Optimizer/Analyzer
Analyze whole application

 ➡ Compile-time evaluation

 ➡ Code Specialization

 ➡ Call-graph analysis

 ➡ Lifespan analysis
● stack vs. heap allocation

 ➡ Program-wide data flow

.fapp

.fuir

Optimizer
Analyzer

35FOSDEM’22: Designing a New Language for Safety: Fuzion

Fuzion: Next Steps
Development Plan
 ➡ intermediate files: .fum, .fapp, .fuir
 ➡ simple analysis tools: field init, immutability
 ➡ C back-end: GC, floats, etc.

● interfacing C library code

 ➡ Standard Library
 ➡ Modeling I/O, thread communication and immutability

● using automatic monadic lifting?

36FOSDEM’22: Designing a New Language for Safety: Fuzion

Conclusion
Fuzion is an exciting new language for safety
 ➡ simplicity
 ➡ design-by-contract
 ➡ prepared for static analysis
 ➡ we need

● to grow our team
● get developer feedback
● secure long-term funding

 ➡ please get involved!

http://flang.dev
siebert@tokiwa.software

github.com/tokiwa-software/fuzion

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36

